VLS ELECTRONICS

Microstructure Science

Edited by 1 4
' NORMAN G. EINSPRUCH

VLSI Design

8862200

VLSI Electronics
Microstructure Science

Volume 14
VLSI Design

UM

E8860900 Edited by

Norman G. Einspruch

College of Engineering
University of Miami
Coral Gables, Florida

i

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers

Orlando San Diego New York Austin
Boston London Sydney Tokyo Toronto

COPYRIGHT © 1986 BY ACADEMIC PRESS. INC

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC
OR MECHANICAL. INCLUDING PHOTOCOPY, RECORDING. OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM. WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
Orlando, Florida 32887

United Kingdom Edition published by
ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road, London NWI 7DX

Library of Congress Cataloging in Publication Data
Main entry under title:

VLSI design.

(VLSI electronics : microstructure science ;v. 14)
Includes bibliographies and index.
1. Integrated circuits—Very large scale integration
—Design and construction. I. Einspruch, Norman G.
II. Series: VLSI electronics ;v. 14.
TK7874.V56 vol.14 621.395s [621.395] 85-30669
ISBN 0-12-234114-7 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA

86 87 88 89 987654321

8869920

VLSI Electronics
Microstructure Science

Volume 14

VLSI Design

List of Contributors

Numbers in parentheses indicate the pages on which the authors’ contributions begin.

Antun Domic (115), MIT Lincoln Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139

Michael J. Foster (139), Department of Computer Science, Columbia Uni-
versity, New York, New York 10027

J. W. Gannett* (81), AT&T Bell Laboratories, Murray Hill, New Jersey
07974

John L. Hennessy (1), Computer Systems Laboratory, Department of Elec-
trical Engineering, Stanford University, Stanford, California 94305

Manolis G. H. Katevenist (35), Computer Science Division, Electrical Engi-
neering and Computer Sciences, University of California, Berkeley, Cali-
fornia 94720

David A. Patterson (35), Computer Science Division, Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, California
94720

Steven A. Przybylski (1), Computer Systems Laboratory, Department of
Electrical Engineering, Stanford University, Stanford, California 94305

Carlo H. Séquin (35), Computer Science Division, Electrical Engineering
and Computer Sciences, University of California, Berkeley, California
94720

Robert W. Sherburne, Jr.} (35), Computer Science Division, Electrical
Engineering and Computer Sciences, University of California, Berkeley,
California 94720

* Present address: Bell Communications Research, Morristown, New Jersey 07960.

+ Present address: Computer Systems Laboratory, Computer Science Department, Stanford
University, Stanford, California 94305.

i Present address: Electrical, Computer and Systems Engineering Department, Rensselaer
Polytechnic Institute, Troy, New York, 12181.

vii

Preface

Civilization has passed the threshold of the second industrial revolution.
The first industrial revolution, which was based upon the steam engine,
enabled man to multiply his physical capabilities to do work. The second
industrial revolution, which is based upon semiconductor electronics, is
enabling man to multiply his intellectual capabilities. VLSI (Very Large
Scale Integration) electronics, the most advanced state of semiconductor
electronics, represents a remarkable application of scientific knowledge to
the requirements of technology. This treatise is published in recognition of
the need for a comprehensive exposition that assesses trends for the future of
VLSI electronics and the scientific base that supports its development.

These volumes are addressed to scientists and engineers who wish to
become familiar with this rapidly developing field, basic researchers inter-
ested in the physics and chemistry of materials and processes, device de-
signers concerned with the fundamental character of and limitations to
device performance, systems architects who will be charged with tying VLSI
circuits together, and engineers concerned with utilization of VLSI circuits
in specific areas of application.

This treatise includes subjects that range from microscopic aspects of
materials behavior and device performance — through the technologies that
are incorporated in the fabrication of VLSI circuits — to the comprehension
of VLSI in systems applications.

The volumes are organized as a coherent series of stand-alone chapters,
each prepared by a recognized authority. The chapters are written so that
specific topics of interest can be read and digested without regard to chapters
that appear elsewhere in the sequence.

There is a general concern that the base of science that underlies integrated
circuit technology has been depleted to a considerable extent and is in need
of revitalization; this issue is addressed in the National Research Council

iX

X Preface

(National Academy of Science/National Academy of Engineering) report
titled ‘“Microstructure Science, Engineering and Technology.” It is hoped
that this treatise will provide background and stimulus for further work on
the physics and chemistry of structures that have dimensions that lie in the
submicrometer domain and the use of these structures in serving the needs of
humankind.

Contents

List of Contributors vii
Preface ix
Chapter 1 VLSI Processor Design Methodology

1L
II1.
Iv.

VI

Chapter 2

IL
1.
Iv.

VL
VIL
VIIIL

Chapter 3

II.
III.

John L. Hennessy and Steven A. Przybylski . “‘j\\

Introduction FA »wy 2
Architectural Methodology " { 4
Organizational Methodology K& & < 10
Physical Design Methodology T LE { 17
Electrical Design Issues N -5 7 28
Conclusions . L 33
References - 33
RISC: Effective Architectures for VLSI Computers

Manolis G. H. Katevenis, Carlo H. Séquin,

David A. Patterson, and Robert W. Sherburne, Jr.

Introduction 36
General-Purpose Von Neumann Computations 38
Fast Access to Operands 45
Register-Oriented Instruction Set 55
The Micro-Architecture of RISC II 62
Implementation of VLSI RISCs 69
Evaluation of the RISC Architecture 72
Conclusions 77
References 77
VLSI Design for Testability

J. W. Gannett

The VLSI Testing Problem — An Overview 81
Design-for-Testability Techniques 90
Self-Testing Techniques 104

Vi

Iv.

Chapter 4

L

II.
II1.
Iv.
V.
VI
VIIL

Chapter 5

II.
111
Iv.

Index

Conclusion
References

Silicon Compilers for VLSI
Antun Domic

Introduction

What Is a Silicon Compiler?

The Operation of a Silicon Compiler
Components of a Silicon Compiler
Areas for Further Development
Silicon Compilation Literature
Conclusions

References

A Specialized Silicon Compiler and Programmable
Chip for Language Recognition

Michael J. Foster

Introduction

A Specialized Circuit Compiler for Language Recognizers
Layout of Systolic Recognizers

Conclusions and Directions

References

Contents

110
111

115
117
118
119
128
134
135
136

139
145
166
191
193

197

VLS| ELECTRONICS: MICROSTRUCTURE SCIENCE, VOL. 14

Chapter 1

VLSI Processor Design Methodology*

JOHN L. HENNESSY AND STEVEN A. PRZYBYLSKI

Computer Systems Laboratory
Department of Electrical Engineering

Introduction

Architectural Methodology

A. Architecture as Program Host

B. Architecture as Implementation Requirements
Organizational Methodology

A. Pipelining

B. Instruction Interpretation

Physical Design Methodology

A. Data Path Design

B. Control Units

C. Other Tasks

D. Interactions with the Other Aspects of Design
Electrical Design Issues

A. Process Characteristics

B. Circuit Techniques

C. Interactions with the Physical Design

D. Interactions with Processor Organization
Conclusions

References

Stanford University
Stanford, California

* The MIPS processor design, which is used as an example in this paper, has been supported
by the Defense Advanced Research Projects Agency under grants MDA903-79-C-680 and
MDA903-83-C-0335.

1

Copyright © 1986 by Academic Press, Inc.
Al rights of reproduction in any form reserved.

2 John L. Hennessy and Steven A. Przybylski

I. INTRODUCTION

Integrated circuit technology has made possible the production of chips
with hundreds of thousands of transistors. Systems of such complexity re-
main difficult to design. The computer architect faces problems in the areas
of system partitioning with subgoal specification, subsystems interface speci-
fication and verification, and overall system integration.

This improvement in integrated circuit technology allows the fabrication
of processors with complexity comparable to the largest mainframe com-
puters designed using off-the-shelf technologies (SSI, MSI, and LSI). These
mainframe machines, such as the Cray-1, the IBM 360/91, and the CDC
7600, have extremely long design cycles and, as a result, high design costs.
With a microprocessor, a low selling price combined with a fairly short
product life cycle may make such large design expenditures difficult to
justify. Additionally, the technology changes so fast that the long design cycle
and optimality of the design may be negated by the rapidly improving
technology.

The use of VLSI as an implementation medium establishes several ground
rules.

(1) Correctness of the design is of paramount importance. Debugging a
flawed chip design is both difficult and time consuming. Alterations cannot
be immediately tested, but must wait for a period of weeks to months. This
forces batching of changes to chip and a high insistence on nearly perfect
designs.

(2) The degree of flexibility in the design is incredibly high; the designers
specify the system organization, the partitioning, the physical placement,
and even the details of the individual driving logic and gate transistors.

(3) Despite this flexibility, there are limitations in the ability of one level
of the design to compensate for shortcomings at higher levels. These limita-
tions come from both inherent constraints in the technology (size, power,
and speed), as well as the need to limit the addition of new complexity at
lower levels of the design. Performance becomes an issue that must be
addressed at all levels of the design.

Throughout this chapter, we will concentrate on the design of general-
purpose microprocessors. Though the specific trade-offs may vary, the con-
cepts and techniques apply directly to special-purpose VLSI processors as
well. Since the MOS technologies have been the primary vehicle for com-
mercial microprocessors we emphasize MOS design methodologies. We will
consider the problem of VLSI computer design as four separate, albeit heav-
ily interrelated, tasks: architectural specification, processor organization,
physical design, and electrical implementation.

1. VLSI Processor Design Methodology 3

Specification of the architecture involves the definition of the instruction
set and the behavior of all components visible to the user of the processor.
These invariably include the register file, the functional units, and the mem-
ory units—including a specification of addressing modes. The nature of and
interface to the exception system is also included and, in some architectures,
the input/output interface. The architecture is largely implementation inde-
pendent: it does not preclude the choice of any particular technology, though
it may strongly favor one technology over another.

An implementation of the architecture begins to take shape by defining
the processor’s logical organization. The interconnection of functional units
is linked with a control structure and a per-cycle timing description that
specifies the sequence of operations that will implement each activity in the
architecture. The details of the memory hierarchy and mapping need to be
defined. Portions of this part of the design may be architecturally transparent
(such as the existence of caches), while other parts (such as the memory
mapping scheme) may be defined by the architecture. Given all this infor-
mation, the performance of the processor can be calculated with fair accu-
racy in terms of numbers of clock cycles per instruction.

Physical design is the process of partitioning of the entire CPU and mem-
ory system onto the physical units that make up the system: racks, cards, and
chips. With the introduction of VLSI, physical decomposition becomes even
more significant: the high relative cost of crossing chip boundaries makes the
definition of these boundaries crucial. Within a single integrated circuit,
functional blocks must be arranged to accommodate the limited area re-
sources and the interconnection constraints of the implementation technol-
ogy. We also include in the physical design process the task of decomposing
the functional blocks into the logic networks that implement them.

By electrical design we mean the translation of logic diagrams to transistor
networks and the accompanying task of layout. We shall deal primarily with
the use of sophisticated circuit design techniques to attain high performance
and the problems of power and area management.

In the past these four aspects of processor design have frequently been
dealt with separately. The effects of the implementation technology on the
logical and architectural levels were kept to a minimum. Likewise, once a
gate level design was specified, most of the higher-level aspects of the design
were ignored in the physical and detailed electrical design. The advantage of
this linear decomposition was that the design process took on a more top-
down, serial nature. The result was to limit the complexity of the overall
process to a manageable level. The development group was made up of
distinct teams of people working separately on the various tasks, passing
their results to those further down the conceptual ladder.

The emergence of MOS VLSI as a viable implementation technology has
brought with it a considerable changing and strengthening of the interactions

4 John L. Hennessy and Steven A. Przybylski

ARCHITEC-
TURE
INSTRUCTION ’

SET
EFFICIENT
INTERPRETATION

ARCHITEC-
TURE

SILICON
RESOURCES
CHIP
ORGANIZATION| | BOUNDARIES
BOARD
SIZE FUNCTIONAL
BOARD UNITS PHYSICAL
COUNT CONSTRAINTS
COMMUNI-
CATION
LOGIC COSTS

DIAGRAMS

AVAILABLE GIRGLAT
BlETe TECHNIQUES
VLSI
HISTORICAL INTEGRATED
APPROACH ENVIORNMENT

Fig. 1. Decomposition of the design process.

between the various design levels. Figure 1 illustrates some of these con-
straints and influences. If these additional upward interactions are not prop-
erly and consistently addressed, the resulting computer will not attain its full
performance potential.

An integrated approach to processor design involves the simultaneous
development of:

(1) an architecture,

(2) an organization that efficiently decodes and executes the instruction
set architecture and that maps well onto silicon, and

(3) atiming framework that tightly couples the organization with prior
knowledge of the circuit techniques to be used along the expected critical
paths.

1. VLSI Processor Design Methodology 5

Having the various aspects progress in parallel leads to a final design that
makes more efficient use of the implementation technology and will thus
outperform more naive designs.

Il. ARCHITECTURAL METHODOLOGY

In many ways, the architecture and organization of a VLSI processor are
similar to the designs used in the CPUs of modern machines implemented by
using standard parts (TTL, ECL, etc.). The design methodology used to
optimize the design and deal with complexity are thus also similar. The MOS
technology imposes some new constraints that emphasize the interaction
between architecture and implementation. This forces the architectural de-
signer to be more aware of the implications of his decisions.

A computer architecture should be measured by its effectiveness as a host
for applications and by the performance levels obtainable by implementa-
tions of the architecture. For a general-purpose processor, the suitability of
an architecture as a host is largely determined by its effectiveness in support-
ing high-level languages. A special-purpose machine can be thought of as an
architecture that supports a restricted class of languages and applications.
For example, a special-purpose chip for graphics applications, such as the
Geometry Engine [1], handles a restricted input language describing geomet-
ric transformations. The nature of the language and the required perform-
ance for primitives in the language is dictated by the structure of the applica-
tions. In other cases, a very general language is appropriate as the
programming language for the chip, but the intended application skews the
frequency of various operations in the input or mandates additional per-
formance constraints. A special-purpose signal processor may fall in this
class: numeric operations occur with higher-than-usual frequency and are
time critical.

In the next sections, we discuss the issues that arise in determining the
suitability of an architecture as a program host and the implications of the
architecture on the organization and summarize by proposing some guide-
lines to help evaluate the suitability of an architecture both for an application
environment and for implementation using VLSI.

A. Architecture as Program Host

The efficiency of an architecture must be evaluated both on the cost and
on the performance of implementations of that architecture for programs of
interest. This evaluation must make realistic assumptions about the use of a

6 John L. Hennessy and Steven A. Przybylski

programming language and the class of applications of interest. Since most
programming is done in high-level languages, performance benchmarks
must be based on measuring such programs; benchmarks based on assembly
language performance are not very useful because they do not accurately
measure high-level language performance.

To measure the effectiveness of an architecture for executing high-level
language (HLL) programs requires an HLL compiler for the proposed archi-
tecture. The quality and structure of the HLL compiler affects the architec-
tural measurements. For example, whether or not the compiler registers
allocation, or global optimization, can dramatically alter instruction pro-
files. Some architects advocate eliminating or neutralizing the effect of the
compiler, usually by assuming a naive compiler technology. This design
approach is flawed for two reasons. First, these measurements will not reflect
the correct design decisions for an environment with better compiler tech-
nology. For example, if a compiler without register allocation is used, the
architect may conclude that the machine should have only a very small
number of registers, since they are not heavily used. A second, and more
subtle, flaw is that the architecture influences the difficulty of building com-
pilers. To effectively utilize some architectures, especially those with sophis-
ticated and powerful instructions, requires a potent compiler. It may not be
possible to effectively utilize some of these features, or it may require compi-
lation techniques that are not acceptable in practice due to high compilation
cost. Without actually constructing a compiler, it is difficult to measure these
effects.

By correctly using the compiler we can arrive at a reasonable approach to
making trade-offs in the instruction set design. Let us assume that the basic
structure of the instruction set is in place. This structure is determined by the
expected programming languages, the applications, the implementation
issues, and the general state of compiler technology. The starting point must
include a reasonable list of operators, some addressing modes, and a set of
rules for combining these two. The compiler can then be used as the evalua-
tion tool for different architectural features.

Consider the following scenario that might arise in many instruction set
design processes. A new set of addressing modes is proposed for the architec-
ture. The addressing mode additions will require that instructions be length-
ened to accommodate a longer operand format. From the compiler view-
point we can evaluate the worth of these additional addressing modes by
comparing the quality of the code generator both with and without such
architectural features. To make this evaluation, the primary piece of data
needed is the execution time (in instruction counts) for the alternatives;
other useful pieces of data include the frequency of use of the new addressing
modes and the difference in dynamic instruction bandwidth. These second-

1. VLSI Processor Design Methodology 7

ary data are useful to corroborate the instruction count data and to under-
stand other effects of the additions to the instruction set. A similar measure-
ment process might be used when considering the addition or replacement of
an opcode. In either event, to complete the evaluation of the additions to the
architecture we need to evaluate the additional implementation cost; we
discuss this impact in more detail in the next section.

It is insufficient to consider only the needs of a compiler in designing an
architecture: an operating system is required to make the hardware useful for
executing applications. The operating system requires certain architectural
capabilities to achieve full functional performance with reasonable effi-
ciency. If the necessary features are missing, the operating system will be
forced to forego some of its user-level functions or accept significant per-
formance penalities that may make the architecture unacceptable. Some
designers have advocated that the architecture provide special support for
certain operating system functions.

Such architectural features should be subject to the same evaluation pro-
cess used when examining instruction set changes. Of course, such measure-
ments are more difficult because they involve an operating system rather
than just a compiler. Estimates based on existing operating systems and their
execution may be the only reasonable method to obtain data that measures
the use of operating system support features contemplated for inclusion in
the architecture. Utilization data from the operating system together with
estimates of operating system execution time (as a percentage of all execu-
tion time) can be used to estimate the architectural performance gain over a
design without such special support. Of course, when considering such fea-
tures we must also evaluate their implementation cost.

B. Architecture as Implementation Requirements

The structure of an architecture dramatically affects the type of organiza-
tion needed to obtain certain performance levels from an implementation of
that architecture. Likewise, given a framework for an implementation, the
ability of the implementation to support different architectural features will
vary widely. This is especially true when the implementation is in VLSI, in
which the interaction of the architecture and its implementation is more
pronounced. Three key properties of the technology are important and tend
to accentuate these interactions. These are the basic gate switching speeds,
communication costs, and the effects of chip boundaries.

The MOS technology sacrifices speed for density; this encourages the use
of parallel implementations. That is, many slower components are used
rather than a smaller number of fast components. This basic design method-

8 John L. Hennessy and Steven A. Przybylski

ology has been the key leverage in a number of projects as varied as systolic
arrays [2] to the Micro VAX-I data-path chip [3]. In the case of systolic
arrays, the individual processors can be quite slow because overall perform-
ance is based on utilization of parallel, pipelined hardware units.

As a general rule, communication is more expensive than computation.
Architectures that require significant amounts of global interaction will
suffer in implementation. Thus, the architect should arrange to make use of
local communication and computation whenever possible. The chip bound-
aries have two major effects. First, they impose hard limits on data band-
width on and off the chip. Second, they create a substantial disparity between
on-chip and off-chip communication delays. This partitioning of the envi-
ronment into on-chip and off-chip objects is particularly important. The
designer must use on-chip resources to cache the global environment and
lower off-chip communication requirements. The size and complexity of the
architecture can force the designer to partition the system in a suboptimal
manner and face very high interchip communication cost.

Another factor that depends on both the architecture and chosen organi-
zation is the complexity of the design. Complexity is a factor affecting both
design time and performance in any implementation medium, but is exacer-
bated in VLSI, in which complexity becomes more difficult to accommo-
date. The costs of debugging and iterating on the design make complex
designs extremely difficult to complete in a reasonable time. The process of
performance tuning is also restrained by the complexity of the basic design.
With limited resources to complete a complex design, the implementors will
have to sacrifice performance in an attempt to get a functional chip. The
most important design corollary from this observation is that no architec-
tural feature comes for free. At the least, it complicates the design, increasing
design time, and often decreasing clock-speed performance, if not actual
functional performance.

The architecture primarily affects the performance of the hardware at the
organizational level, where it imposes certain requirements. Smaller effects
occur at lower implementation levels at which the technology and its proper-
ties become relevant. The technology acts strongly as a weighting factor that
favors some organizational approaches and penalizes others. It is useful to
examine our architectural trade-off scenario from the implementation view-
point. The instruction count data gave us an architectural measure of the
value of the proposed extensions. At the implementation level, the key issue
becomes the clock speed that is obtainable with the two architectural alter-
natives. Together, the architectural and implementation measurements
gave a good picture of whether the feature belongs in the architecture. Of
course, it is more difficult to measure the implementation cost, since it is
probably impractical to design the chip with all possible proposed features.
Experienced designers may be the best estimators of such costs.

