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FOREWORD

The study of dynamics and control of flexible multibody systems has become increasingly im-
portant in recent years due to the problems encountered in the design of proposed space stations,
large spacecrafts, lightweight robots performing rapid maneuvers and machine components sub-
jected to high speed operating conditions. In order to provide a forum for exchange of recent
developments on the subject, the Applied Mechanics Division and the Dynamic Systems and Con-
trol Division of ASME jointly sponsored a symposium on “Dynamics of Flexible Multibody Systems:
Theory and Experiment” at the Winter Annual Meeting held in Anaheim, California, November 8-
13, 1992.

This book of proceedings contains all the twenty-seven papers presented in six sessions on
November 12 and 13, 1992 at the symposium and covers various issues related to the problem of
flexible multibody dynamics and control. The papers appear in the same order as they were pre-
sented.

A successful organization of a symposium is a considerable task, particularly for someone like
myself who can hardly claim any expertise on this topic. First, | would like to thank all the authors
for promptly submitting their valuable contributions and meeting the deadlines, some of which
were not very convenient due to some reason or the other. | would also like to thank Professor
Wayne Book, Professor Ahmed Shabana, and Dr. Ramen Singh for organizing various sessions for
the symposium and Dr. Henry Waites for sharing the burden. Last, but not the least, my sincere
thanks are due to Ms. Marilyn Swaim of the Mechanical Engineering Department, Auburn University
for providing secretarial assistance and Ms. Barbara Signorelli at the ASME Headquarters for mak-
ing sure of its publication on time.

S. C. Sinha
Auburn University
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COOPERATIVE MANIPULATION OF FLEXIBLE OBJECTS:
INITIAL EXPERIMENTS

David W. Meer and Stephen M. Rock
Aerospace Robotics Laboratory
Stanford University
Stanford, California

Abstract

The vast majority of the work done on multiple manipulator systems
has focused on manipulating rigid objects, both in free-space motion
and contact tasks. Not all objects encountered in potential robotic
applications are rigid, however. Spring-loaded parts, lightweight space
structure members, and heavy cabling provide just a few examples of
flexible objects that robots may need to manipulate in the future.
This paper presents a testbed for the study of cooperative manip-
ulation of flexible objects. It discusses some of the important char-
acteristics required for this study. Using this testbed, the limitations
of two control strategies used for manipulation of rigid objects are
demonstrated when applied to flexible objects. The results justify the
validity of the testbed as well as providing motivation for further study.

Introduction

The advantages of using multiple manipulators include increased pay-
load capability, improved dexterity with larger objects, and expanded
functionality. Most previous research, however, focused on developing
control strategies for multiple robotic arms manipulating a single, rigid
body. What happens when the manipulated object is flexible? Vari-
ous potential robotic applications, from the assembly of spring loaded
parts in a manufacturing environment to the servicing of satellite so-
lar arrays in orbit, will involve the manipulation of flexible objects by
multiple manipulators.

One of the most promising and general approaches to cooperative
manipulation is object-level control. This technique allows the oper-
ator to issue task level commands, such as “capture this object” or
“insert this connector into that fixture”. The controller takes care of
the details of the operation, drawing upon a library of task primitives,
freeing the user to perform other tasks. This capability has been devel-
oped and demonstrated successfully on a wide variety of experimental
platforms. [1] [2] [3]

The goal of this research is to extend object-level control to flexi-
ble objects. This paper presents some preliminary findings. First, an
experimental testbed is described. It consists of a pair of arms and
a flexible object. Next, two attempts to apply previously developed
control strategies to a flexible object using this experimental testbed

are discussed. The first, Object Impedance Control (OIC), developed
for cooperative manipulation of rigid objects, performed poorly in at-
tempts to regulate the free space motion of the object. In fact, this
controller was unstable for higher object stiffnesses. The second con-
trol strategy, a coordinated PD control, was stable and could perform
free space manipulations without undue excitation of the object’s flex-
ibility. The coordinated PD controller, however, proved insufficient for
tasks involving deformation of the object. These results show that cur-
rent controllers, designed for manipulation of rigid objects, perform
poorly when applied to a flexible object and that the experimental
testbed embodies the problem of interest.

Related Work

Some work has been done on the control of flexible objects with robotic
manipulators. This body of work addresses various aspects of the prob-
lem, including trajectories and task formulation. It does not, however,
focus on the interaction between the flexibility and the controller.

Zheng and Luh [4] used a flexible object to eliminate kinematic
redundancy problems in their early work on coordinated control of
multiple manipulators. These results seem to indicate that, in some
cases, flexibility in the object may make the task of controlling such
systems easier.

Recently, Dauchez, et al, presented experimental results for a pair
of 6 dof arms deforming a spring and transporting the spring in the
deformed state [5]. They used symmetric hybrid position/force con-
trol. The principal contribution of the work was the method they
used to describe the task with “virtual sticks”.The algorithm used,
however, was so computationally complex that the controller ran at
20 Hz. Also, the hybrid control approach requires task dependent
control mode switching. This can be a disadvantage when performing
complex tasks. '

Zheng, Pei, and Chen [6] have also done work on assembly of de-
formable objects. The assemblies involved sliding a long, flexible beam
into a hole with a single manipulator. The principal contribution of
this work was determining the proper trajectory for the arm to follow
based upon the beam properties and the tightness of fit.

The goal of this research is to explore the interaction between ob-
ject flexibility and the system controller.



Design Objectives

Several criteria helped shape the design of the experimental apparatus
used to study cooperative manipulation of flexible objects. First, the
arms should be as ”ideal” as possible. An “ideal” arm would produce
specified forces and accelerations at the endpoint exactly. This allows
the experiments to focus on the problems introduced by flexibility in
the object rather than those caused by friction at the robot joints,
flexibility in the drive train, etc. The goals in designing the flexible
object included (1) introducing the flexibility at a frequency of interest
within the bandwidth of the control system, (2) providing the capabil-
ity to change the natural frequency and stiffness of the flexible element
in order to study the effect of varying these parameters, and (3) cre-
ating an object that was deformable with the available actuators in
order to study assembly operations requiring deformation of the ob-
Ject. Finally, the testbed should not be so geometrically complex that
the computational speed of the control computers severely limits the
algorithms that can be applied to the system.

Experimental Apparatus

Addressing the last of the design criteria, the experimental testbed
is limited to 2 dimensions, simplifying the computational complexity
significantly. The flexible object has 4 degrees of freedom (DOF) and
each manipulator has 2 DOF. The flexible object floats on air bear-
ings over a granite surface plate, eliminating the effects of gravity on
the system and simulating the drag-free environment of space. These
simplifications enable the research to focus on the problem of inter-
est: how flexibility affects the control of an object grasped by multiple
manipulators.

Cooperating Manipulators

Figure 1 depicts one of the pair of experimental arms. Each manipu-
lator is a direct-drive, SCARA two-link arm, with revolute “shoulder”
and “elbow” joints. At the tip of each arm is a two-dimensional force
sensing pneumatic gripper. These grippers fit into ports on the manip-
ulation objects. The connection is mounted on a bearing pin joint, so
the manipulator cannot apply torque at the connection. The system
thus provides frictionless two-dimensional motion.

Elbow RVDT

—a— Elbow Motor

Yoke

— Elbow Pulley Drive System

Shoulder Motor

a—— Pneumatic Cylinder
Shoulder RVDT

-— Force-sensing Beam
a— Gripper Bearing

Figure 1: Arm Schematic

A schematic view of one of the two link, SCARA, arms used in
the experimental testbed.

The manipulators have a reach of 0.65 meters and are separated by
0.60 meters at the shoulder hub. The motors on the manipulator are
DC limited-angle torquers. A motor located at the shoulder transmits
torque to the elbow joint through a steel cable. Joint angles are mea-
sured by a rotary variable differential transformer (RVDT) mounted

on each motor shaft. Each arm also has a vision target located over the
gripper for use with an overhead vision system. See [7] for a detailed
description of the manipulators.

Many factors, including the direct drive nature of the arms, the vi-
sion and force sensors at the endpoint, the two dimensional nature of
the experimental system that eliminates the need for gravity compen-
sation, and accurate calibration of the motors bring these manipulators
close to the “ideal”.

Flexible Object

The flexible ob ject consists of two pads that float on an air cushion over
the granite surface plate. These pads are joined by a six bar linkage.
The linkage is designed to add a single flexible degree of freedom to the
object. Figure 2 shows the object in both the nominal configuration
(solid lines) and the deformed configuration (dashed lines). The circles
represent pin joints in the mechanism while the thicker lines show the
two sections of steel wire that give the object its flexibility. These
segments can easily be switched out to change the stiffness of the
flexibility in the object. Each pad also has two gripper ports and a
target for tracking by the overhead vision system (not shown in the
drawing).

Flexible Element

Deformed Configuration
Pin Joint

Notmal Configuration

Figure 2: Flexible Object

This flexible object, which floats on a granite surface plate, uses
a six bar mechanism with 2 flexible elements. The object thus
has three rigid degrees of freedom and one flexible degree of
freedom.

As Figure 3 shows, the free vibration of the flexible object, with
the particular stiffness used in these initial experiments, has a natural
frequency of 3.06 Hertz. This plot also shows the very lightly damped
characteristic of the linkage. The linkage gives the object a range for
the distance between the pads of between .025 meters and .09 meters,
with a nominal separation of .064 meters.

Current Control Strategies

This section briefly outlines the two control strategies applied to the
experimental system. The motivation for these experiments was to
demonstrate that deficiencies exist with current control strategies when
applied to flexible objects and to test the validity of the experimental
testbed.
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Figure 3: Free Vibration of Flexible Object

This plot shows the deflection from the nominal separation of
the two pads of the flexible object for a nonzero initial condition.
Note the lightly damped response.

Object Impedance Control

The Object Impedance Control (OIC) strategy enforces a controlled
impedance of the manipulated object [8]. Equation 1 contains the
particular impedance relationship chosen for this controller.

Tnal(-:l5 - ides) + kv(z - j’des) + kp(x - zdes) = fert (1)

Here, 2 is the coordinate of any one DOF of an arbitrary frame fixed
relative to the object’s frame. The constants mg, k,, and k, can be
specified independently for each degree of freedom. z4., represents the
desired position of the chosen frame and #4., is acceleration feedfor-
ward. The derivation of the control equations based on the desired
object behavior specified in Equation 1 is fully contained in Schnei-
der [8]. Basically, the controller attempts to cancel the actual object
dynamics and make the object behave according to Equation 1. This
produces a desired acceleration, #4.,, and force, fze,, at each arm end-
point. Then, if M and J represent the mass matrix and Jacobian for
a given arm and ¢ is the vector of joint angles, the arm kinematics
yield:

iides = J_l(ides - J¢I) (2)
Combining this with the arm equations of motion, where C contains
the nonlinear coriolis and centrifugal terms,

T = Mges + C(q,8) + J7 fues (3)

produces the desired torques for each arm, 7. These equations are for
the simplified planar case.

This technique requires an accurate model of the dynamic behavior
of the object. It also uses the location of the object in the feedback
loop. Endpoint feedback techniques are generally not very robust to
the introduction of unmodelled modes of vibration. Consequently, the
unmodified Object Impedance Controller applied to a flexible object
was expected to perform poorly.

Object PD Control

The second control strategy tested was a very simple coordinated PD
control. Coordinated control refers to an approach that uses the de-
sired motion of the center of mass of the object to calculate the de-
sired motion of the the grip points. This control makes no attempt

to compensate for dynamic forces, relying on the strictly kinematic
relationship between the grip points and the object center of mass.
This approach treats the arms as a simple force source, calculating
the force that each arm should apply using a PD control law on the
gripper port. This yields

Jawm = kp(pdes - P) + ku(pdes - i’) (4)

where fgrm is the desired arm endpoint force, k, and k, are specifiable
position and velocity gains, p represents the endpoint position of the
arm, and pges is the desired arm endpoint location. The desired arm
endpoint location, pges, comes from the kinematic relationship between
the desired object center of mass and the grip point on the object. The
controller simply runs the desired endpoint force, fyrm, through the
Jacobian, J, to produce the torques at the joints, 7.

7 = I o (5)

This control should be stable regardless of the object’s dynam-
ics, since it essentially treats the motion of the object, including the
flexibility, as a disturbance to the arm endpoint.

Experimental Results
Object Impedance Control

Experimentally, the Object Impedance Control strategy proved un-
stable for motions that provided sufficient excitation to the flexible
object. Figure 4 shows a time history of the spring mechanism com-
pression for a slew of 0.15 meters in 1.0 seconds in the upper plot. The
lower plot shows the desired and actual center of mass X position. The
slew begins at about 1.5 seconds. Clearly, the interaction between the
object’s flexibility and the controller is leading to instability. Also note
that, despite the excitation of the flexibility, the object’s X position
does not deviate significantly from the desired.

Spring Compression . . .

0.04 T -

meters

02 . Object CM Position X .
5
g oaf 1
E
0 L . s . L . J
0 3 4 5 6 7 8 9
seconds

Figure 4: Object Impedance Slew

As this plot of the spring compression during a slew shows, the
Object Impedance Controller can excite the flexible mode in the
object.

Object PD Control

As Figure 5 shows, the gripper point PD controller was stable for the
same slew that caused the object impedance controller to go unstable.

So, the simple PD controller works well for free space motions.
While the flexibility was excited somewhat, the PD controller quickly
damped it out once it began regulation.



0.015 E —Spring Compression .
0.01 L i
r 0.005 4
]
Q
g 0 s - B
-0.005 - 4
-0.01 L i n L L n " "
0 1 2 3 4 5 6 7 8 9
02 . . Obieq CcM Posiltion X .
0.15} L
5 il desired actual
0.05 ! 1
0 ’ 4 s 2
0 1 2 4 <] 6 7 8 9
seconds

Figure 5: PD Slew

While the PD controller applied to the flexible object exhibits
significant overshoot, it does damp out any excitation of the
flexibility.

The next test involved directly manipulating the flexibility in the
object. Figure 6 shows the distance between the ports for a desired
compression of -0.12 meters beginning at about 2.5 seconds. The ac-
tual compression achieved, -0.0275 meters in this case, depends upon
the proportional gains used in the controller. Also note that the ob-
ject rotates as it compresses. So, while this simple coordinated PD
controller can damp out the object vibrations when the spring is un-
stretched, it does not control the object adequately for manipulations
involving deformation.

Conclusions

This paper describes a hardware testbed developed to study the prob-
lem of manipulation of flexible objects. It discusses the criteria used
to design a testbed to study the problem of interaction between the
system controller and the flexibility in the object. A flexible object
composed of two rigid bodies coupled by a mechanism designed to be
flexible in one dimension is the principal difference between this sys-
tem and systems studied in previous work. To validate the testbed and
demonstrate that a problem does exist, two controllers were applied
to the experimental system. For the first strategy, Object Impedance

Control, the results demonstrated a sensitivity to modelling error. The
controller performed marginally, at best, and sometimes proved unsta-
ble, depending upon the stiffness of the object. The second approach,
a coordinated PD controller was stable and did exhibit reasonable per-
formance in free motion. However, it did a poor job of controlling the
object for tasks that involved deformation.

0.01 ; : —Spring Compression ; :
; J
g 0011 |
i
Q
& -0.02 B
-0.03} = p
0.04 ; , i " i ;
0 1 2 3 4 5 6 7 8 9
0.01 . ; —Obiect Orientation ; .
0 ¥ i I‘ e
2 001} y  desired 1
B actual g
B 002t e .
0.03}F S N NIk i SR e
-0.04 - : . - - . . .
0 1 2 3 4 5 6 7 8 9
seconds
Figure 6: PD Spring Compression
When commanded to deform the flexible object, the PD con-
troller rotated the object as well as compressing it.
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NUMERICAL ANALYSIS OF NONMINIMUM PHASE ZERO
FOR NONUNIFORM LINK DESIGN

Douglas L. Girvin and Wayne J. Book
George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

As the demand for light-weight robots that can
operate in a large workspace increases, the structural
flexibility of the links becomes more of an issue in control .
When the objective is to accurately position the tip while the
robot is actuated at the base, the system is nonminimum
phase. One important characteristic of nonminimum phase
systems is system zeros in the right half of the Laplace
plane. The ability to pick the location of these nonminimum
phase zeros would give the designer a new freedom similar
to pole placement.

This research targets a single-link manipulator
operating in the horizontal plane and modeled as a Euler-
Bernoulli beam with pinned-free end conditions. Using
transfer matrix theory, one can consider link designs that
have variable cross-sections along the length of the beam. A
FORTRAN program was developed to determine the location
of poles and zeros given the system model. The program
was used to confirm previous research on nonminimum phase
systems, and develop a relationship for designing linearly
tapered links. The method allows the designer to choose the
location of the first pole and zero and then defines the
appropriate taper to match the desired locations. With the
pole and zero location fixed, the designer can independently
change the link’s moment of inertia about its axis of rotation
by adjusting the height of the beam. These results can be
applied to inverse dynamic algorithms currently under
development at Georgia Tech and elsewhere.

INTRODUCTION

Controller design for collocated systems has been
heavily researched and is well understood compared to
controller design for noncollocated systems. In
noncollocated systems, uncertainties from model inaccuracies
and modal truncation present fundamental problems with
system performance and stability [18]. The fundamental

difference between collocated and noncollocated systems is
the presence of these RHP zeros. To advance controller
design for noncollocated systems, research needs to be
conducted into the factors that affect the location of these
RHP zeros. This research targets the relationship between
RHP zeros and structural design.

Although research on RHP zeros is limited, there has
been some notable research done in the past. In 1988, Nebot
and Brubaker [13] experimented with a single-link flexible
manipulator. In 1989, Spector and Flashner [19] investigated
the sensitivity effects of structural models for noncollocated
control systems. In 1990, Spector and Flashner [18] again
studied modeling and design implications pertinent to
noncollocated control. Also in 1990, Park and Asada
[15],[14] investigated a minimum phase flexible arm with a
torque actuation mechanism. In 1991, Park, Asada, and Rai
[1] expanded their previous work on a minimum phase
flexible arm with a torque transmission device.

The underlying issue in noncollocated control is how
to deal with the RHP zeros in the control algorithm. A
major step in solving the problem is understanding what
design parameters can be used to change the location of these
RHP zeros. This research targets the relationship between
RHP zero location and structural design. Specifically, how
do changes in the shape of the structure (link) affect the
location of these zeros?

Traditionally links are designed with uniform
properties along the length because analytic solutions to this
problem exist. A link with variable cross-section cannot be
solved analytically, but with aid of a computer a numerical
approximation can be found. The key to an accurate
numerical solution is a good model of the system.

The research presented in this paper models a single-
link flexible rotary manipulator as a pinned-free beam.
Transfer matrix theory was used to generate a beam with
variable cross-section. FORTRAN code was written to
generate the model and evaluate the system for the location
of RHP zeros. The program was used to examine the
relationship between link shape and RHP zero location. This



relationship can be directly applied to controller design using
the inverse dynamics approach researched at Georgia Tech
and elsewhere.

TRANSFER MATRIX THEORY

Transfer matrices describe the interaction between two
serially connected elements. These elements can be beams,
springs, rotary joints, or many others. In 1979 Book,
Majette, and Ma [6] and Book [4] (1974) used transfer
matrices to develop an analysis package for flexible
manipulators. They used transfer matrices to serially connect
different types of elements to model the desired manipulator.
Of interest in this paper is how to connect similar types of
transfer matrices (beam elements) to model a beam with
different cross-sectional area. Pestel and Leckie [16] provide
an in depth discussion of transfer matrix derivations and
applications.

Transfer matrices can be mathematically expressed by
Equation 3.1. The state vector u, is given by the state vector
u,, multiplied by the transfer matrix B.

u, = [Bi]u‘,1 3.1

When elements are connected serially, the states at the
interface of two elements must be equal. By ordered
multiplication of the transfer matrices, intermediate states can
be eliminated to determine the transfer matrix for the overall
system.

The concept of state vector in transfer matrix theory
is not to be confused with the state space form of modern
control theory. The state equation in modern control theory
relates the states of the system as a function of time. In
transfer matrix theory the state equation relates the states at
various points along the serial chain of elements. The
independent variable in a transfer matrix is the Laplace or
Fourier variable with units of frequency, not time. The
elements of the matrix B depend on the frequency variable
and therefore the states will change as the system frequency
changes. The transfer matrix B essentially contains the
(Laplace or Fourier) transformed dynamic equations of
motion that govern the element in analytic form. Therefore,
analytical solution of the transfer matrix alone does not
involve numerical approximations to the partial differential
equation modelling the beam. This is desirable since
numerical approximations introduce error into the solution.

A single-link manipulator as pictured in Figure 3.1
can be thought of as a beam with torque applied at one end
and free at the other end. There are several steps to
determine the RHP zeros and imaginary poles of this system.
First, develop a model for the beam. Second, determine the
appropriate boundary conditions. Third, determine the system
input and output. Fourth, solve for the system zeros. The
following sections will discuss each of these steps in more
detail.

A link with nonuniform cross-sections can be
modeled as a series of discrete elements. While the shape of
these elements is similar, the size can vary to allow for
changes in cross-section. The appropriate element to model

a flexible link is an Euler-Bernoulli beam element. The
Euler-Bernoulli model neglects the effects of rotary inertia
and shear deformation in the element. [11]. This
assumption is generally valid for modeling beams whose
length is roughly ten times the thickness. Flexible
manipulators have long, slender links which are appropriately
modeled under the Euler-Bernoulli assumption.

Transfer matrices are derived from the equation of
motion for a given element. For a uniform Euler-Bernoulli
beam element, the equation of motion transformed to the
frequency domain has the form:

d*w(x,0) _ po?

It g e®)
where,

n = mass density per
unit length

w = frequency in
radians/second

E = Young’s modulus

I = Cross sectional

area moment of inertia

Notice the equation is fourth order thus requiring four states
to describe the solution in transfer matrix form. The state
vector for the Euler-Bernoulli element is:

-w displacement

w=|V¥|-| slope (3.3)
M moment
vV shear force

The first two elements of the state vector are displacements

(w and ) while the last two elements are forces (V and M).
This arrangement of states is characteristic of transfer matrix
theory.

An analytic solution to Equation 3.2 can be found
when the element has uniform properties (ie. constant cross-
section, mass density, and stiffness). Equation 3.4 gives the
transfer matrix for a uniform Euler-Bernoulli element. Each
element of Equation 3.4 is a function of frequency and must
be reevaluated as the frequency of interest changes.

€, IC, aC, alC]
péC aC
- G 7 G
™ = 4C 4lC (34)
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where,

Cy = 5(coshp + cosp) (3.5)
C - ;li(sinhﬂ + sinp) (3.6)
C, = —(coshp - cosp) (3.7
2p?
C, = 2L‘P(sinha - sinp) (3.8)
and
214 2
o 0y - E @
B = (3.9) o = (3.10)

With the transfer matrix for the fundamental beam
elements, one can combine these elements serially to
generate a model for the link. Figure 3.3 illustrates how a
simple model can be constructed for a tapered beam.
Although only two elements are considered here, more
elements can be added to better approximate the shape of the
link. Since the states at interface u, are the same for both
elements, %, can be eliminated to obtain an overall transfer
matrix for the beam:

AL (3.13)

Eliminating one state simply illustrates the point that this
multiplication can be carried out to eliminate all intermediate
states in a model with more elements.

As previously mentioned, transfer matrices themselves
are not numerical approximations. The transfer matrix for a
Euler-Bernoulli beam contains the analytic solution for a
uniform beam element. It is not an assumed modes solution.
The approximation made in using transfer matrix theory
involves the modeling of the beam and solution of the
equations. To generate the model of a link with variable
cross-section, the size of the elements must vary. The
interface of two different size elements will be discontinuous.
In Figure 3.3, interface 1 is discontinuous between elements
A and B. These discontinuities are the major approximation
when using transfer matrices to model a beam. This
approximation can be minimized by using more elements to
model a nonuniform beam. As more elements are added to
the model, the discontinuities between elements will decrease
thus reducing the effects of this approximation on the results.

Transfer matrix theory as used to represent a variable
cross section is similar to Finite Element Analysis (FEA). In
FEA, first the system must be discretized. Then an
appropriate interpolation function must be selected to

describe each element (ie. element stiffness). Next the
system matrices must be assembled to produce a set of linear
algebraic equations. Finally the linear equations are solved
to get an approximate solution to the system under
consideration. These boundary conditions are applied to the
overall transfer matrix for the system and the appropriate
state variables are set to zero.

-w By, -~ By\[o

| & I R I ). (.14)
0 110

0 x= B41 - BM Vx=0

Since this research targets the location of RHP zeros the
system output is tip position, and the system input is joint
torque. Considering the system input and output, the overall
system transfer matrix will have the form:

0
I N (3.15)
T

In the above equation, w;_ is the system output which
corresponds to tip position, and T is the system input
corresponding to joint torque at the base of the manipulator.

With the system input and output chosen, Equation
3.15 can be simplified to relate system input to system
output:

(3.16)

Where By are elements of the overall transfer matrix in
Equation 3.15. When the frequency is found which renders
the function inside the brackets zero the output at that
frequency will always be zero regardless of the input;
therefore, the zeros of the bracketed term are the system
Zeros.

To search for RHP zeros, one must consider what
type of frequency to input into Equation (3.16). Using the
relationship which defines the Laplace variable, s

s = jo (3.17)

one can easily determine @ should have the form:

w=0-jb where Osbseo  (3.18)



That is, imaginary negative values of @ will result in purely
real positive values of s. Thus searching Equation 3.16 with
frequencies of the form of Equation 3.17 one can find the
location of the RHP zeros on the real axis.

Although the location of RHP zeros is of primary
concern in this research, knowledge of pole location will help
in analysis of the results. Since the system damping is
ignored, the poles will lie on the imaginary axis of the s-
plane in complex conjugate pairs. The location of these
poles can be determined by simply searching the positive
imaginary axis of the s-plane. Considering the applied
boundary conditions, one can extract two homogeneous
equations from Equation 3.14 to get the homogeneous

system:
gl e
0 14

The poles (eigenvalues) of the system are those values of ®
which make the determinant of the sub-transfer matrix in
Equation 3.19 equal to zero (see reference [6] for a detailed
explanation). For a two by two matrix this determinant is
simply:

B 32 B34
B42 B“

g(w) = B,B,, - ByB, (3.20)

Referring to Equation 3.17, one finds that Equation 3.20 is
the denominator of the input/output transfer function which is
to be expected. To find the values of the purely complex
poles, one must search Equation 3.20 for its roots.

According to the definition of s, ® must have the form:

@ =b+jo (3.21)

Searching over a range of values for b will give the poles in
that range. With the zero and natural frequency functions
determined, the problem remains to implement a computer
solution to find the RHP zeros and imaginary poles.

RESULTS

Unless otherwise specified, several dimensions remain
the same from one study to the next (referred to as nominal
dimensions). The overall length of the beams is 40 inches,
and the height (which remains constant over length) is 1
inch. The material properties are selected to be those of
aluminum: modulus of elasticity, E, is 10E6 psi, and the
density is 9.55E-2 lbm/in’.

Although the model was limited to uniform elements,
there were any number of combinations one can find to
represent the system. This study examined two different
methods for modeling a linearly tapered beam. As shown in
Figure 4.1 the link was tapered along the length in the width
dimension while the height was held constant. The taper was
described by two dimensions: the width at the base, A, and
the width at the tip, B. The degree of taper, R=A/B, was
used to compare different designs.

Using Method 1 to model the tapered link, the beam
was divided into elements of equal length. For a three
element model with length L, each element will have length
L/3. The height of each element was the same, while the
width of each element changed linearly as a function of x.
Figure 4.2 presents modeling Method 1.

Using Method 2 to model the tapered link, the beam
was divided into elements so the first and last element have
length one-half of the intermediate elements. For a three
element model with length L, the first and last elements will
have length L/4 and the middle element will have length L/2.
Again the height of each element was the same, while the
width of each element changed linearly as a function of x.
Figure 4.3 presents modeling Method 2.

Figures 4.2 and 4.3 illustrate the main difference
between the two modeling methods. Method 2 compensated
the elements at each end for meeting the specified end
widths A and B. In both methods the width of intermediate
elements was determined by the width of the tapered beam at
the midpoint of each element. Since the end elements meet
the specified A and B, the tapered link will not pass through
the midpoint of these two elements. Method 2 compensates
for this exception by making the end element lengths one
half the length of the other elements.

To compare these two different modeling methods for
a linearly tapered beam, a beam with nominal dimensions
and A=0.75 inches and B=0.25 inches was studied. This
corresponds to R=3. The number of elements was increased
with each method until the zeros and poles converged. Table
4.3 presents the results from Method 1 where all elements
were of equal length, and Table 4.4 presents the results from
Method 2 where the end elements were half the length of all
other elements. Although only two methods are considered
in this research, there are many different ways to discretize a
nonuniform link.

The two methods were evaluated based on an error
function. When the tapered beam was modeled with 80
elements, both methods converged to nearly identical values
for the poles and zeros. These values, when NE=80, were
taken to be the "correct’ values and other cases were
compared to this case. The error, ¢, was defined for the
Zeros as:

280 ~ ANE,
Zg0,i

¢ = 4.2)

where i refers to the i zero

A similar definition was used for the poles. The
value of e at the top of each column represents the
maximum of all individual errors in each column, As the
tables show, Method 2 provided better results for the same
number of elements. In each table, one column was shaded
to distinguish it as the number of elements needed to get the
error under 1%. For Method 2, this column corresponded to
NE=10 as opposed to NE=20 for Method 1. Thus,
compensating the end elements did provide a better model of
a linearly tapered beam, and this method was used in the
following studies unless specified otherwise.

When comparing different link designs to evaluate
pole/zero location as a function of link shape, it was



necessary to keep some parameter constant to aid in the
evaluation. For a single-link manipulator rotating in the
horizontal plane, the link’s mass moment of inertia about its
axis of rotation, I,, was of importance. This parameter
directly affected the dynamic equations of motion and was an
important design parameter in terms of motor selection. In
the following studies, several link designs were evaluated for
a given value of I,. A tapered link’s moment of inertia about
its axis of rotation in terms of the links parameters: L, A, B,
H, and p is found to be:

I = %g_’(ﬁ + A%B + AB® + B® + 4AL® + 12BLY
@.3)

For a given tapered link design, one can use Equation 4.3 to
determine I,. Knowing I, one can change the value of A
and solve Equation 4.3 for B. Since the equation was cubic
in B, the commercial package Mathematica was used to
solve for B. Following this method, a group of tapered link
designs were generated all with the same L.

The first study investigated several tapered link
designs with nominal dimensions and all designs having
1,=764.05 in-lb-sec>. Table 4.5 presents the raw data for
each of these designs. Even with I, held constant, it was still
difficult to interpret the data. To aid in developing a
relationship between zero location and link shape, the zeros
were normalized with respect to the first pole for each
design. The first pole is an important parameter in control
systemn design, and normalizing the zeros with respect to the
first pole aided in the interpretation of the results. Table 4.6
presents the normalized data for those designs with 1,=764.05
in-1b-sec?. The second study presents data for several link
designs with nominal dimensions and I,=1528.1 in-1b-sec?.
Table 4.7 shows the raw data for these link designs and
Table 4.8 shows the normalized data for these designs.
Figures 4.4 and 4.5 show pole/zero maps for selected values
of R for [,=764.05 and 1,=1528.1 respectively.

Several patterns were evident by examining the raw
data. First as a general rule, both the poles and zeros
increased (moved away from the origin) as the taper on the
beam increased. Increasing the taper effectively moved more
of the link mass closer to the base. Increasing the value of
the poles is often desirable to push them out of the system
bandwidth and increase system response speed. The ordering
of poles and zeros was the second pattern recognized. In a
collocated system, the poles and zeros will both lie on the
imaginary axis in complex conjugate pairs and in an
alternating order. This means, along the imaginary axis, the
poles and zero are found in the order p,, z,, p,.2,, €tc. or vice
versa. Previous research [18] has found this alternating order
of poles and zeros does not hold for nonminimum phase
systems. Referring to Table 4.5, notice the order of the
magnitude of poles and zeros was: z,,p;,P2,25:P3Z3:P4:Ps5:Z4- -
p, jumped in front of z,, and the same occurred for p;. This
reordering of poles and zeros can be critical as accurate
knowledge of the pole/zero order is important for control
system design.

Important information was learned from examining
the relationship between the taper ratio, R, and the values of

the normalized zeros. Figure 4.8 better illustrates this point
showing both polynomial fits on the same graph. Even
though the coefficients were different for each polynomial fit,
the curves were nearly identical.

This illustrates an important relationship in the design
of tapered links. For a given ratio R, the normalized zero
will always remain the same. The designer can choose the
location of the first pole and zero, determine the normalized
zero, and then using Figure 4.8 find the appropriate taper
ratio R. Of course there are constraints on this process. A
ratio less than one corresponds to a taper with B greater than
A, which is usually undesirable. At the other end, R is
limited by the value of H. If A is larger than the value of H,
the link will be wider at the base than it is tall, and the
assumption that the link is stiff in the vertical plane will no
longer be valid. Although the designer can choose the
pole/zero relationship, the values of normalized zeros are
limited to approximately 0.72-0.82 (according to Figure 4.8).

A simple verification of the above relationship is the
uniform beam which has no taper. According to the stated
relationship, the normalized first zero should be the same for
all uniform beams. Table 4.9 presents the results for several
uniform beam designs. All cases had nominal dimensions.
The normalized zero in all cases was 0.726 which confirmed
the normalized zero will not change as long as R is constant.

Previous studies demonstrated how the designer can
choose the pole/zero relationship and then determine the
appropriate taper design from the ZERO results. This study
presents the designer with another freedom. Once the taper
is chosen, the designer can change the link to independently
adjust the value of I,. Table 4.10 presents the results of a
study performed on designs with L=40 inches, and all
designs have the same taper. The height of the link was
changed to adjust the value of L.

One should notice that the pole and zero locations of
all designs in Table 4.10 were the same, yet the value of [
changed with adjustments in link height. Since the
adjustment of H is out of the plane of motion, it had no
effect on the location of poles and zeros. Combining this
with the results from the previous study, the designer can
effectively choose the location of poles and zeros and
independently adjust the links moment of inertia about its
axis of rotation to meet the needs of the particular system.

CONCLUSIONS

Program ZERO was developed as a tool to locate the
poles and zeros of a single-link manipulator modeled as a
pinned-free Euler-Bernoulli beam. The program used
transfer matrix theory to allow for variable cross-sections
granting the designer new freedom in analysis of nonuniform
link designs. The results were shown to be very accurate
when system pole location was compared to analytic
solutions for uniform beams. Several results from previous
studies were confirmed with this research.

First, the reordering of poles and zeros was confirmed
for nonminimum phase systems. Accurate knowledge of
pole/zero order is critical for proper control system design.
In conjunction with this, Tables 4.3 and 4.4 show that even
for very few elements in the model, the program still predicts
the proper order of poles and zeros.



Second, the studies presented suggested the
nonminimum phase characteristics could not be eliminated by
changing the structural design of the link. The system will
be nonminimum phase above a finite frequency dictated by
the location of the first nonminimum phase zero. It may be
possible that this frequency is out of the operating range and
not of concern to the designer.

The major contributions of this research are the
development of the ZERO program to determine zero and
pole location for a single-link nonuniform flexible
manipulator, and formulation of a design procedure to place
the first pole and zero and independently change the value of
the link’s moment of inertia about its axis of rotation to meet
the needs of the system.

Program ZERO was set up specifically for pinned-free
boundary conditions of the model and determines pole and
zero location based on a frequency range entered by the user.
Linearly tapered beams were studied in this research, but any
type of nonuniform beam can be analyzed by program
ZERO. Slight modifications would also allow for different
boundary conditions.

The design procedure for tapered beams allows the
designer to choose the first pole and zero subject to certain
physical constraints. These physical constraints only allow
for approximately 25% variation in R according to Table 4.6.
This zero to pole ratio defines a particular taper ratio
according to the collected data. Keeping the ratio the same,
the size of the taper can be changed to get the proper
magnitude of the pole and zero. With the pole and zero
placed, the height of the beam can be changed to adjust the
link’s moment of inertia about its axis of rotation. This
procedure can be used to design tapered links to meet the
particular requirements of the system.

Program ZERO was designed to model a single-link
manipulator modeled with pinned-free boundary conditions.
This is a simplified model, but it was necessary to show
transfer matrices yield good results for this case before
progressing to more complicated problems. Now that
transfer matrices have proven useful to solve for zero
location, future work exists to extend the results of this
research.

First, the program could be modified so the user
could input the desired boundary conditions whicii best
represent the system. This could include hub inertia or end-
point mass. Second, the program could be extended to multi-
link designs to predict pole and zero location for different
configurations. Transfer matrices have been derived for
rotary joints and many other elements. The DSAP package
developed by Book, et. al. [6] handles multi-link models and
would be a good reference. Finally, the results for tapered
link designs could be applied to the inverse dynamic
algorithm developed by Kwon and Book [9]. This method
requires mode shapes for the assumed modes and uses
pinned-pinned boundary conditions, which can also be found
using transfer matrix techniques as shown in Book, et al.[6].
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