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Foreword

Thesymposium on Fractography and Materials Science was held on 27-28
Nov. 1979 in Williamsburg, Va. The American Society for Testing and Mate-
rials, through its Committee E-24 on Fracture Testing and Subcommittee
E24.02 on Fractography and Associated Microstructures, sponsored the
event. The symposium chairmen were L. N. Gilbertson, Zimmer, U.S.A.,and
R. D. Zipp, International Harvester, both of whom also served as editors of
this publication.
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Introduction

This symposium was organized to demonstrate the importance of utilizing
state-of-the-art and new fractographic principles in materials science. These
principles are applied in the upcoming text to a variety of metals, including
iron, aluminum, titanium, copper, nickel, and tungsten-base alloys, and var-
ious nonmetals, including polymers, ceramics, and glasses.

The papers contained in this volume demonstrate that fracture analysis is
more than just examination of the fracture surface. Variables such as the mi-
crostructure, stress conditions, and the environment control the fracture sur-
face topography in materials. All of the papers presented here discuss at least
one of these variables and its influence on the resulting fracture morphology.
By correlating these variables with fractography, a more complete and de-
tailed understanding of fracture characteristics in materials is made possible.
This is necessary to comprehend more fully the complexities involved in frac-
ture processes.

This volume should serve as a background reference and a guide for investi-
gators interested in evaluating fracture surface topographies for a variety of
materials. The high degree of sophistication needed to interpret complex frac-
tographs should become evident as the reader becomes familiar with this doc-
ument. We believe that the information contained within provides a firm
foundation for continued advancement in fractography and demonstrates the
level of refinement that has taken place recently in this field. We also think
that the work presented here can be still further refined to provide for better
understanding of fracture behavior in materials.

L. N. Gilbertson
Zimmer, U.S.A., Warsaw, Ind. 46580; sympo-
sium chairman and editor.

R. D. Zipp

International Harvester, Hinsdale, Ill. 60521;
symposium chairman and editor.
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D. A. Meyn' and E. J. Brooks'

Microstructural Origin of Flutes and
Their Use in Distinguishing
Striationless Fatigue Cleavage from
Stress-Corrosion Cracking in
Titanium Alloys

REFERENCE: Meyn, D. A. and Brooks, E. J., “Microstructural Origin of Flutes and
Their Use in Distinguishing Striationless Fatigue Cleavage from Stress-Corrosion Crack-
ing in Titanium Alloys,” Fractography and Materials Science, ASTM STP 733, L. N. Gil-
bertson and R. D. Zipp, Eds., American Society for Testing and Materials, 1981, pp.
5-31. .

ABSTRACT: Postfracture analysis does not always distinguish striationless low-stress
fatigue from stress-corrosion cracking (SCC), since both are characterized by cleavage,
together with other less distinct fracture modes. Studies of identical specimens of Ti-
8Al-1Mo-1V broken under both conditions suggest that the presence of certain micro-
plastic fracture features called flutes may be uniquely characteristic of SCC, and absent
from low-stress striationless fatigue fractures. Some new observations concerning the
microstructural origins of flutes verify that they arise from a tendency toward planar
slipin o and a-B alloys and from the presence of multiple cleavage during crack propa-
gation under certain circumstances, including SCC.

KEY WORDS: titanium alloys, stress-corrosion cracking, fatigue, fractography, frac-
ture mechanisms, cleavage, flutes, hydrogen embrittlement, sustained load cracking,
materials science, materials

Both aqueous stress-corrosion cracking (SCC) and low-stress fatigue crack-
ing (LSFC) in alloys that are susceptible to SCC, such as Ti-8Al-1Mo-1V,
create substantially similar fracture surfaces that consist mostly of cleavage
facets. Under sufficiently low cyclic crack-tip stresses, LSFC leaves no stria-
tions to serve as unmistakable signs of fatigue. Hence, failure analysis in these
alloys can be uncertain where the fracture surface consists mainly of cleavage.
Differentiation between the two cracking mechanisms can often be made by
experienced fractographic analysts by noting a smoothed, tear-ridge-free ap-
pearance in LSFC, in contrast with a greater abundance of tear ridges and
somewhat more microplastic deformation at cleavage facet boundaries in

lMetallu_rgisls Naval Research Laboratory, Washington, D.C. 20375.
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SCC. However, more cut-and-dried qualitative differences are preferable in
making such distinctions.

A feature of SCC fracture surfaces of a and a-g titanium alloys, once mis-
taken for cleavage [1],” but since identified as flutings [2], river patterns [3, 4],
and striations [5], seems to provide such a qualitative differentiation. The
term *“flutes” is preferred for these features as it avoids confusion with other
applications for the latter two terms.

Notall those who use fractography for materials research or failure analysis
understand exactly what flutes are and what causes them to form. Some new
observations of fluting under conditions of mechanical overload fracture,
SCC, sustained load cracking (SLC) in inert environments, fatigue, and corro-
sion fatigue conditions will be presented to familiarize readers with a variety
of flute characteristics and to provide new information concerning fluting
mechanisms and the conditions that give rise to fluting. The following discus-
sion includes a review of significant prior work, a summation of conditions
and parameters important to flute formation, some comments on mechanisms
of flute initiation and formation, and, finally, an assessment of the signifi-
cance of flutes as a diagnostic fractographic feature in o and a-f titanium
alloys.

Materials and Methods
Materials

A review of numbers of fractographs in the literature made it clear that
flutes produced by SCC look similar in most near-« and a-p alloys such as
Ti-5A1-2.5Sn, Ti-8Al-1Mo-1V, and Ti-6Al-4V. Alloy Ti-8Al-1Mo-1V was
therefore selected for flute fractography studies in two metallurgical condi-
tions: the B-annealed and furnace-cooled and the as-received “mill-annealed”
condition. One other alloy of unusually high interstitial content, Ti-0.350 was
chosen for examination of flutes formed under mechanical overload
conditions.

The microstructures of both the beta-annealed (8A) and the mill-annealed
(MA) Ti-8Al-1Mo-1V material are shown in Fig. 1. The BA material consists
mainly of colonies or packets of similarly aligned « plates, with interplate 8-
phase. This is usually called coarse Widmanstitten alpha. The colonies or
packets behave like single grains in many respects; for example, large cleavage
facets consist of cleavage on a common plane through all the plates in a single
facet, since they are all of essentially the same crystallographic orientation
within a colony. However, the B-phase between the alpha plates does not
cleave, and this constitutes a site for diversion of cracks. The MA material
contains some fine Widmanstatten-like microstructures, but it consists mostly
of a mixture of primary alpha (irregular grains) and so-called transformed

?The italic numbers in brackets refer to the list of references appended to this paper.
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FIG. 1—Microstructures of Ti-841-1Mo-1V alloy, etched with Kroll's reagent, X700: (top) B
annealed (1065°C, 4h) and furnace cooled: (bottom) a-B hot worked, mill annealed.
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beta, a fine dispersion of alpha-phase in a skimpy beta matrix. The Ti-0.350
alloy (not shown) consists of very large angular and platelike grains with no
B-phase.

The following presentation will refer both to « plates, which are platelike o
grains, and to cleavage plates, which result from multiple cleavage through
one or more « grains to produce partly isolated cleavage elements. This is il-
lustrated in Fig. 2 for a single plate-shaped a grain, with some other features
whose significance will be apparent later. In the hexagonal close-packed
(HCP) crystal of the a-phase, the (0001) planes are often called basal planes,
and planes and generalized surfaces perpendicular to (0001) are termed
prismatic.

CLEAVAGE
PLANE
15° FROM (0001)

FLUTES
~{1070} SEGMENTS
i e WITH (0001) AXIS
a
(GRAIN) < CLEAVAGE

PLATE

\_ g { SIDE OF oa*PLATE
{4150} (NEARLY
{1010})
FIG. 2—Schematic illustration of a platelike o grain, cleaved into three parts on a plane 15 deg

from the basal plane showing what is intended by the terms « plate and cleavage plate. Flutes are
shown on one side to illustrate the geometrical relationship with the cleavage plane.



