1Q[722&

£1978077@*L

SUMMER INSTITUTE ON
SET THEORETIC TOPOLOGY

(Summary of Lectures and Seminars)




i 197807

Ebv>

Summary of Lectures and Seminars

SUMMcR INSTITUTE ON SET THEORETIC TOPOLOGY

Madison, Wisconsin - »

Foreword.....-............;..

m‘nbershiE.o.-.o'o.';o"cloaiot

Hour Lecturss

D. Montgomerys
G. T Whyburn:
and future . o
Re L. Wildar: e veE]
manifolds. « 43
E. E. uois“ B
Edwin -Hewitt:

theoretic topoloyto a.nalysd.s e s o 00000 17

R. H. Bing: What topology is here to stay? « « « » 25

Seminar on Generalised Manifolds

M. L. Curtis: Examples of generalized manifolds

P. A, White: Generalized manifolds with boundary
Thomas R. Erahana: Direct products of generalized

mnifolds'ithbomryoo-.oo.-..-c
R. L. Wilder: Mappings of manifolds « « o« « o « »

M. L. Curtis: Deformations of generalized
manifolds ® @ » @ 8« 6 © ¢ » & © ®» © & @ © ©
u. L. Curti'ss mupy mnifolds @ ® o o & ®

Seminar on Topolqg_of 3~space

Re Lo Wilder: Historical background ¢ « « «
Alan Goldman: Some aspects of kmot theory .
0s Go Han'old, Jr.: Patholog e b 3—51309 -
R. He Bing: Decompositions of into points
mmms‘..o.-.ccco---.o

z

B 8w 3%

BWR

)




R. H. Bing: Approximating surfaces with polyhedral
oms.....-.ll.l...'...'.»...

0. G. Barrold, Jr.: Some consequences of the approx-
imation theorem of Binge « « o « ¢ s ¢ o ¢ 0 ¢ o o

Some other problems proposed in the 3~dimensional
m.nifoldssenﬁ.mr_.....'... D T e

mcnmmmlmfoldsconcat_.oo..

Seminar on Semi-Metric Spaces

F. Burton Jones: Introductory remarks on semi-metric

Sms L] L[] . . . L . e o L] L 3 L ] e e L] L] * L] Ll °
Louis F. McAuley: On semi-metric spaces o « « o
Morton Brown: Semi-metric spaces ¢ « s o ¢ o o »

e @

. ®

Seminar on Structure of Contimua and Topol of the
" Plane —

G. T. Whyburn: Structure of continua . .
F. Burton Jonss: On homogeneity ....-e »
F. Burton Jones: Problems in the plame .

e o & o

R-B.Binxl mw‘ﬂm'o-c.e
C. E. Burgess: Homogeneous continua .
‘Re De Andersons callacﬁ.omofpmndo-ercainﬂn
plane—Homogenei ty of the universal curve o« o « o«
R. D. Anderson: Probless on universal curves, pseudo-
msammhm:mcﬂ ® ¢ o o 6 s 0 5 o 5 B O ®
L. F. JMcAuley: On decomposition of continma into
aposyndetic contirma e e ¢ e 0 0 00 00 0 0 00
R. F. Williams: Reduction of open mappings « » « » «
E. J. Dyer: Equicontinuity in continuous collectioms
ofcmﬁm--ooo..co'o-ooooonc
Mary-Elizabeth Hamstrom: Contimuous collections of
continuous CuI'veS o o ¢ ¢ ¢ o 0 6 o ¢ s 0o ¢ o o o
mmenn\mn: cmdmssoooooonoocl
J-sly'efmtm“!-_--oo--ooancnooo

® o o o o
¢ o 0 0 o
e o & o o
¢ B0 o &

Seminar on Fixed Paints

Oo Ho Bamilton: The Cartwright Littlewood theorem .
Eldon Dyer:z The.fixed point property on qQuasi-

cmq)laxes..-..o.........--.-.

lagtgomry Fixed point sets under involutions

® © & o » @2 o © @ o © © © & o © » &6 & o 0 o

ll.x.l-‘m't,Jr.: Essential fixed paints o « o « o o

58
62

3

feR £ 83

8¢ & %



Seminar on Transformations and Transformation Groups

E. E. Floyd’: Repor‘t of the seminar e & o o © ¢ o o 0 ®»
E. Hemmingsen: Homeomorphisms having an equi-
continuous family of iterates o o o o o o o0 » o o
M. XK. Fort, Jrez The embedding of homeomorphisms in
ﬂows . L ] L ] L 2 L] L ] L] L ] . L] L d ® ® o L ] L] L] ® o ° L 2 ° [ ]
R. F. Williams: Local properties of .open mappings « .
Eldon Dyers Certain transformations which lower
dimenSiONS o o o o o o o o o ¢ o« o 6 o 0o 6 0 ¢ o o e
R. D. Anderson: Report on the monotone, light open,
and monotone open mappings of manifolds and re-
1atedspaces...-...........o..-.
Jo H. Robertss Local arc-wise comnectivity in the
space H? of homeomorphisms of SP onto itself o . «

Seminar on Paracompact Spaces

Melvin Hemrikmn: Report ® e & o o o & o o & © o o o
E. Michael: A swrvey of paracompactness and related
topics L] L] - L] Ll L] L] * Ll . . ° L] e L L] o ° L] ° L] L] L]
Jo R. Isbell* Supercomple'be Spaces ¢ o e e s 8 0 0 o o
Ad Jo Goldm A Cech fundamental Eroup o o o o ¢ o o

Seminar on Fibre Spaces

M. L. Curtis: Covering homotopy Property e « o o « o
M. L. Curtis:; Homotopy equivalence of Fiber Bundles .

Seminar on Function Spaces and Topological Algebra

Richard Arens: Harmonic functions in Banach algebras .
Richard Arens: Generalized power series algebras , . .
R. C. Buck: Algebras of linear transformations and of
functionals..............--....’
Melvin Hendricksen: Report on rings of continuous
functions.............-....-..
Edwin H ewitt: Report on algebras of bounded con=
tin“ousfmctions @ ® ¢ 0 o o o & o ¢ o o &
L. Gillman: Mer-real ﬁelds e + o & o o o o
Le Gillman: Some special SPaces e o o o o o o
V. L, Klee, Jro.s Topological structure of normed
15NEAr SPACEE o « o « o o & v & & 5 o B e b e & s &
J. R. Isbell: Rings of un’®ormly continuous functions

e o & o
e o o o
e o

S. B, Myers: Differentiation in Banach algebras ., « o 1

Walter Rudins Algebras of analytic functions e« o« « «
Richard Arens: Topological algebra Seminar o o « o o o
Seminar on Extension Theorems

M. K. Fort, Jr.: Extensions of mappings intc n-cubes .

E. Michaels Recent analogues of the Urysohn-Tietze
extensiontheorem..... e o oo

E. Michaels Selection theorems for contlnuous functions

3

92
96

91
98

99

99"

102
102

107

ard



FORERORD

The third summer institute sponsored by the American Mathe-
matical Society with financial support from the National Science
Foundation was devoted to set theoretic topology. Meetings were
held on the campus of the University of Wisconsin from July 24
to August 20, 1955.

At its organizational meeting, the Imstitute elected R. H,
Bing as chairman, It selected six of its members to give hour
addresses; also it set up numerous seminars to cmmsider various
phases of set theoretic topology. Each seminar chose its own
leaders and organized itself. A summary of the six lectures and
the deliberations of the seminars is inclunded in this pamphlet.

Tt wes thought that it would be valuable to have this
surmary came out without delay. Hence, there was essentially no
editing of this report. In most cases, handwritten repcrts
were turned into the chairman during the lagt week of the
Institute. He turned these over to the typist and as quickly
as the typing was done the duplicating process was begun, Per=—
haps a list of corrections will follow. It is hoped that the
advantage of getting the report promptly will outweigh the dis-
advantage of culling out possibie srrors.

The reports of the seminars contain sbstracts of talks
and questions raised. Perhaps the answers to soms of these
questions are known but it is presumed that at the time a
question was raised, no one presemt in the seminar knew the
answer. Perhaps many of the questions are not of great mo-
ment but no effort wes made to cull them,

It is hoped that this summary will prove useful both to
those who attended the Institute and those who did not attend.

We mention again that this is & "crash" sumary, run off
without delay. Much credit for getting the typing done
is due to Mrs. Beatrice Holmburg, Secretary of the Mathematics
Department, University of Wisconsine

While the supply lasts, these summaries may be obtained
free from Professor R. H. Bing, 301B North Hall, University
of Wisconsin, Madison 6, Wisconsin,



TRANSFCORMA TTONS

by
D. Montgomery

let G be a compact group which acts as a topological tifans-
formation group of a mamifold M; assume that the action is ef-
fective, that is that every element except the identity moves at
least one point of M. Then questions may be raised on roughly
three levels of generality as followss

1. If G is not assumed to be a Lie group, do the above
conditions nevertheless force it to be a Lie group? Equiva~-
lently must G have a neighborhood of the identity which con-
tains no non~trivial subgroup? In particular if G is compaoct
and zero-dimensional, must it be finite?

In this direction it has been shown (Montgomery and
Zippdn) that if M = E3 and G is comected, then G is a Lie
group, and furthermore, that G is either the circle group or the
orthogonal group on 3 variables and that in either case coordi-
nates can be chosen so that G acts in the usual way,

2. Assume G to be a Lie group. It has been proved that if
r is the highest dimension of any orbit then points on orbits of
dimension «€ r form a closed set of dimension = n-2 (Montgomery
Samelson, Zippin)e This is a generalization of a theorem of
Newman,

If M = ER the following questions are suggested: a) must
geo:itpdntbeﬁmdmﬂermehmntsof(}? b) can two orbits
nked? ;

3e Assume G to be a Lie group and that M is a differ=
entiable manifold on which G acts in & differentiable manner,
The two questions raised above are unanswered in this more spe-
clal case as well, '

Now lot Gx be the gubgroup of G consisting of all elements
leaving x fixed, Among the points on orbits of highest dimen~
sion there may be some where Gx is discontimuous, Let these be

denoted by E. It has been showm (Mo
ot e B or (Montgomery, Samelson, Yang)

For ¥ = % what can be sald about the set of fixed points

of G mst they be a sphere of lower dimension or at
rese one in the sense of homology, A mumber of :eiat?&ut

g-ﬁstions about fixed points suggest themselves in both 2) and



SET THEORETIC TOPOLOGY = PRESENT AND FUTURE
by
G. T. Whybuorn

Remarks were made concerning the nature of set thearetic
topology as of today and its role in the current and possible
future development of the whole of mathematics was discussed.
By way of example, some recent comtributions of topology to
the classical theory of functions of a complex variable were
sketched. Indications were given as to how properties of
such functions which are topological in character are obtained
by topological type arguments from the fundamental properties
of lightness and opemmess belonging to the class of all map-
pings generated by amalytic functions. Attention was called
to a still missing topological proof of the fact that a map-
ping generated in this way can be a local homeomorphism at a
point z of the complex plane only if the derivative of the
gererating finction does not vamish at 2. The problem of es-
tablishing a relation between the contimuity properties of
the decomposition of the z-plane into sets on which an ana-
lytic function is constant and the exceptional and asymptotic
values of the function was discussed in some detail, Lack of
typper semi-continuity® in a certain sense of the decomposi~
tion at an element is a phenomenon analogous to that of an

exceptional value for the function on this set. The blem
is to pin down this relationship precisely and de to

what extemt these phenomena are interdependent or simultaneous,

In conclusion some possible improvements in the perform-
ance of set theoretic topologists and their contribution to
the overall mathematical scene were mentioned., Better writing,
simpler statement of results and more readabk proofs were
stressed. .It was suggested that nearly every important thearem
which survives permanently in methematics eventually becomes
stateable in simple terms. 14180 its proof becomes reasonably
cmehsnﬂhle tkrough one of two occurrencies, namely, either
by direct simplification or by a whole new theory being de-
veloped in mathematics involving new concepts and results which
everrtually engulfs the theorem in question and offers it in
palatable form in its proper setting,

Key referencess See the bibliography at the end of the authort
ey s
;;pei Open mappings on locally compact sets", A.K.S., Memoirs,
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DEVEIDPMEST OF A THEORY FOR MANIFOIZS

by
B, L. Wilder
The first smbitious program that could be called

topological was carried out by Poincaré, By subdividing a
surface into a finite number of pileces called celly the deter—
mination of the ®Beiti numbers® was reduced to a finite al-
getraic procedure—e simplication which rendered proof of to—
pological invarisnce quite difficult, however. His study of
manifolds and discovery of the duality theorem named after

hin, as well as of the fundawental group, protouni]y mtln-
enced later work.

Figare 1 is a simplified diagram indicating lines of in-
fluence and lster developments. The "generalized manifolds®
of Veblen, van etc., were still composed of cells,
whilée those of and Iefiorets (1933) took advantage of the
extensions (Vistoris, fech) of homology theory to general
spaces in arder to set up spaces which could be called
Spanifolds® in the sense that they satisfied the Poincaré
duality, etc. Howewver, they wem strictly “homology meni-
folis®, defined entirely in terms of homology (and set-
tbmtic) properties that failed to eliminate spaces that
weare not 1 = L C, for instance.

2 sketches sn independent 1lins of development
{I do not recall a single mention of Poincaré's name in the
of Schoenflies mentioned below, although he was fami-
with and made use of, Riemann's work on "commectivivy®).
the figure is parh:ps aelf-explanatory, I will point out
only two M ters which the details of the figure may
not bring out. s note that the arrow from Moore's
chnruter:lzatim of ovur to the column headed ®"Decompo-
gition spaces ].ouh into the first itemgof the latter
'p-g?e bu to upper semi-contimuous decampositions
of So far u I know, Hahn's work was independent of
Moore!s. But as I recall it fram my personal association
with Moore at the time, his interest in upper semi-con-
timous collections of contimua in the plane stemmed from
the fact that he recognized, as g good "Axiomatiker®, that
the elements of such collecticns when considered as points,
with suitable definition of certain sub-collsctinns as
re%ons (®point® and "region” were the undefined elements
axioms), satisfied all his axioms for the plane (so
long as no contimuum in the collection separated the plane).
4s is well-known, we may consider this as the definition



FOINCARE'S COMBINATORIAL TOFOIOGY

(1) Subdivision into cells (2) Manifolds and Duality Theorem (3) Pundamental Group

R T

Contimation by Veblen in "Generalized manifolds", as Homotopy theory
1916 Colloquium Isctures e.gs by Veblen (1916), van (Hurewicz, 1935)
*Analysis Situs” Kampen (1924); eto.

J

Homology theory of general
spaces (Vietoris, 1927
Cech, 19323 and o._..roauw

®
/ Generalized manifolds as
general topological spaces

having certain homology

properties. /V
: "Homotopy manifolds®

Figure 1
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o!ammofnzm!z but this was not the
point of view that was of interest. htcrdonlmw-
rhasise both these points of view, of course,

Secondly, note that the bottos item om the left
("Extension to the ngom ...) was motivated from two direc-
tions, My “Convers for EB" with n >3, cantained a defect
due to the lack of a topological characterisation of the

omenifold for n > 2, shich resulted in my being able only
to assert that the converse in EB, for n > 3, yislded what
I ealled an "(n - l}ﬁ.mimlgamaundcbudnnuold'
—(n 1)-gem for short. Comscious of this, as well as of

ths underlying canse (Mdntopologiulchuu&exﬁution
utP),ld.‘hmt;‘mtbmasthg

Hsaif (in place of see how mmch gran
?n:. mmmgimm of BB could cmm

mmmwm,m,-mmg-rwa
mammmm leleh, not com—
pletely characirizhg B as Moore's axioms did for ,:ugnt.;f.
wp&hwﬂmﬁon. It turned owut that not only

254 such thecrems a8 the Jordan-Brouwer theorem and the con—
verse go over to the new spaces, but almost without exception
all imown theorems of plame topology become special cases of
theorens comcerning a-gems.

y the metric cases of the 1-gem and 2-gem
reduce to the uﬁn classical closed 2-manifolds., Also,
the axioms which I used can be shown to be equivalent to the
independently devised exicms of (bch-Iefschets; they have been
subsequently reduced by Begle and wyself to very simple form.

1e In order that a space S should be topologi-
cally a plame, it is necessary and sufﬂcianb that
it be 2-dimensional, connscted, locally campact, le
metric such that pl(S)= 0, and zarcmyxzs, pi(s,x) =
0 and p*(3,X) = 1.

{yr(s,x)htbwmmmtlmof
Satthept X Jo

E_a_;_g RSisanorlubablen—gusnehM
pl(S) is a wlo®* *(=wrifarm local r~comected for
r=0,1, ...,n-ZJMotSwhosebwndartha
non-n-dimensional contirmmm, then B is an crientable n—-gom.

{For n= 2, and S mtric, this becomss Moare's converse
of 1918 mentiomed as second item, colum 1 of Figure 2,}

Twrning to Figare 3, we consider a line of development
stemming direetly from a problem arising in 19th century
Analysiss Cen a plane curve x = f£(t), y = g(t), where the

10
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real paremeter ¢ varies contimmously from ¢ to 1, fill up a
‘square and its interior? While +he curves defined by Peans,
Hilbert and E. H. Moore did this, they contributed littie to
the next obvious question. What types of configuration can
constitute & set of points which & plans curve passes through?
Schoenflies gave a complete solution of the latter questiocn.
Six years later Hahn and Mazuridevwicz independently, infln=
enced by the new concept of "topolsgical space”, developed in
such works as those of Frechet and Hausdorff, gave intrinsic
characterizations of those topological spaces that can be con=
tinuous images of the real ciosed interval=—spaces that are me-
tric continua and are O=lc==a result of baautiful simplicity
and generality.

Each of these results gave rise to new problems: The
Schoenflies resu:!.t,é phrased in terms of the "situation" of the
configuration in E°, gave rise to the problem~how to racog-
nize the “contimous curves® by their situation in higher di-
mension, i.e., by positional properties in B, n>27 The
Hahm=Mazurkiewicz theorem gave impetus to the search for other
characteristic properties of "contimious curve spaces", as
well as to an intensive structural analysis (the Whyburn
cyclic element theory ie an excellent example of the latter).
I should like to selact one of these characteristic mroperties,
dus to Sierpinski and subsequently slightly modified by Moore
and called "Property S", for parposes of exemplification.

Sierpinski showsed that in order that a compact metric
space M should be the continuous image of a real interval, it
is necessary and sufficient that it havz the following property:
For any € > 0, M is the union of a finits number of closed
and comnected sets of diamster< &€ , This property, with
®closed"omitted, Moore called Property S, Notice that it is a
global property, in contrast to the Hahn-Mazurkiewicz local
connectedness. Now supposs S is a locally compact (not ne~
cessarily metric) space, M a subset of S, and G any group of
compact cycles of S, Then we say that Y has Property (P,Q30)F
if for arbitrary open sets P ard Q such that Q is compact and
PDOTQat most a finite mmber of cycles of ¥ N Q are linearly
independent relative to homology (= 1irh) in PQ M, For G the

group of all compact r-cycles of S, we simply write (P,Q)T;

for G tl))zg group of bounding compact r-ocycles of S, we write
P,Q;’U ]

Now in locally compact spaces, Properties S and (P,Q)o are
equivalent, so that (P,Q)® may be considered a genaralization
to n dimensions of Property S. And analegous to the relation-
ship between Property S and 0-1c, we have that for a compact
Space to be 1o® , it is necessary and sufficient that it have
Property (P,Q)g ~=that is, localy connected in a1l dimensions

12



0 to n is equivalent to having (P,Q)R® in all dimensiomns

0 to n, However, many properties of lc® spaces can be genara-
lized to spaces havianz (P,Q)F only over a limited rangs m £

r = n where m > 0, And among the most interesting propsrtiss

that the (P,Q)-properties have are the duslitiss tney aatisfy

when we introduce thes corresponding properties for cohomology.

o From such dualitles, for instance, one sa3ily
derives that if M is 2 closed subset of an orientablse n=-gzem S,
and r< n = 1, then for M to have (SP,Q ~ )7 it _is necessary
and sufficient that 3 = U have (P,Qzi )P T2, Since for & Son-
timum (P,Q;4#)° = (P,Q)°%, the special case re O and S the
2-sphere 53¢ gives at ancs thaba nasc that a subcontinuum ¥
of S%be 0=1c is that its complement have property (2,Q;av) =
i.8., that each complementary domain have property S and the
diameters of these dcmains form a mull sequence (the Schoen=
flies-Moore theorem).

4. One of the well known theorems of plans to-
pology was the Torhorst Theorem: If M is a continuous curve
in 8¢, and D a complsmentary domain of M, then the boundary
F(D) of D is a continuous curve, For generalized manifolds we
hava: If M is a O-lc closed gubset of an orienvable n-~gem S,
which has property (P,Q;~s)87%, and D is a complementary domain
of M, then F(D) is O-lc. (Note that for tho case waere S= 8%
and ¥ is connacted, ths O-lc condition on ¥ is equivalsmb to
the (P,Q,A/)° condition 30 that in this case the two condi-
timns merge.) Another gensralizavion iss If M is an 1cB™°
closed subset of an orientzble n=-gem S and D a component of
S-M, then F(D) is O=ic.

Unsolved problems. As observed avove, the separable
metric cases of the gm's merge with the classical types for 1
and 2 dimensions. Examples show thatthis is not true for 3
gi.memions. It would be interesting to know if every 3=gem in

which herelike bot, mology and homotopy is 52,

the manifold is spherelike only in the homology sense, the
answer seems to be negative, since there evidently exist sur-
faces of "Poincaré space"™ type in that are not 3-spheres
{Cfs the minutes of the seminar on generalized manifolds, Tth
sessio:ﬂ. A related question is eve = in B =
manifold in the classical sense? not, every J—gcm in
the homotopy sense (see below) in a 3-manifc.d in the
classical sense?

A basic question concerning n-gms, n > 2, that has remain-
ed unsolved iss Is every n—gm locally orientable? (An n-gm is
locally orientable if each point has a neighborhood which is an
orientable n=gme)

Twenty years ago Alexandroff raised the question

13



whether a which is perfectly normal is necessarily
metric? This remains unanswered.

Due to their generality as topological spaces, 1ittls
is known of the dimension theory characteristics of gm's.
For example, it is not even imown whether an n-dimensional
continuum in an n-gem S must contain interior poins of S
not even whether a common of two domaing in an
D gem 1S at_most (n - ;I%mgl_o (CF, Txsmple 2

above, )

There are many other unsolved problems, as for in-
stance those concerning n{%_gf;l—gﬂ_a and varions
types of de tions o And the theary of
*hemo topy () is a virtually untovched fisld.

£ ;
[Using certain results repcrted on in the Manifolds
seminar, the answer is evidently negative.]

14



CERTAIN CLASSICAL PROBLEMS
OF EUCLIDEAN TOPCLOGY

By E. E. Moise

Perhaps I should begin by explainming that there will be
very little factual conteni in what I have to say: I will be
di scussing various unsolved problems., MNoreover, these problems
are not new: all of them can be considered classical, and the
most recent of them was proposed in print fifteen years ago.
Nevertheless, I believe that they deserve discussion now.

In the first place, while all of them are of a high
order of difficulty, I am by no means convinced that they are
so hopeless, in the present state of knowledge, as to be
best forgotten or ignored. In the second place, the nature of
their interest has in some cases shifted rather drastically
during the past twenty years or so: some of the classical
problems of combinatorial topology are now much more de-
serving of the attention of set-thesoretic topologists, who
until recently have paid rather little attention to them.

This is true, in particular, of the Triangulation Problem.
There was a time when a solution of this problem was urgently
needed, in order to show that the use of triangulations, in
the algebraic topology of manifolds, represented a method,
rather than an ad hoc hypothesis. But invariantly defined
homology theories are now long familiar; and the Wilder theory
constitutes an extended proof that the’' homology theory of
mani folds 1s autonomous, in the sense that the desep homology
properties of such spaces are deducible from their trivial
homology properties, with no strong use of their Euclidean
siructure, and in particular, without use of triangulations.
The categoricity of the Eilenberg-Steenrod axioms has been
established not only for triangulable spaces, but also for
absolute neighborhood retracts. Examples could be multiplied
to show that in algebraic topology the Triangulation Problem
has been bypassed with great success.

To the set=theorist, however, the problem appears in a
different light. Its primary importance is as a symptom. It
seems fair to say that the problem has not been solved because
the foundations of set-theoretic Euclidean topology are not
rightly understood; and it seems reasonable to predict that if
the iriangulation theorem is proved, in any direct sort of way
then the methedology of the proof would be of much broader



applicability., Some have expressed the hope that a proof

can be found, using the elegant and powerful methods which
have lately been developed in the theory of groups. This may
be so. But from the poinmt of view that I am talclng here, it
would be more desirable to find a "direct proof, which ine
stead of bypassing the essential geometric difficulties,
would come to grips with these difficulties and break them.
Perhaps the best criterion for such a "direct" proof is that
it should lead &lso to a proof of the so-called Hauptvermutung.
This asserts in effect that a manifold can be triangulated in
essentially only one way; that is to say, any two triangulae
tions of the same mamifold must be combinatorially equivalent.

The essential geometric difficulties are substantialj
some of them represent major problems in their own right. For
example, consider the star St(v) «f a vertex v of a triangu-
lated n-manifold., For n greater than 3, it is not known whe-
ther St(v) must be combinatorially equivalent, or even topo-
logically equivalent, to an n-cell, This is the so-called
Sphere Problem. If St(v) can be thrown into n-space by a piece=
wise linear homeomorphism, then the answer to both questions can
easily be shown to be affirmative. But our hypothesis, taken
on its face, asserts merely that St(v) can be thrown into n-space
by a homeomorphism, It is plausible to conjecture that the
latier comxlition implies the former, not caly for
sets, but for amy n-manifold with boundary. (This has been
proved for dimension 3; it represents the casc epsilon equals
infinity of an approximation theorem. See Amn, of Math, vole
55 (1952) ppe 215-222,) Thus, if there are farms of combi-
natorial pathology, refuting the Sphere Conjecture, then there
are forms of set=thsoretic topology, of an at least equally
implausible kind.

We cbserve that the Triangulation Problsm, the Hauptver-
mutung, and the Sphere Conjecture have at least ans property
in common: each of them calls far the construction of a
homeomorphism. (In fact, all of the problems which I shall be
discussing have this property.) In dimension 3, the vsual way
of doing this is to define the desired homeomorphism first over
a 2~dimsnsional set, and then externd it. For example, if C is
a 3=cell with boundary B, then any piecewise linear hcmeomorphism
of B into 3-space can be extended to give a piecewise linear
homeomorphism of C into 3-space. This deperds on a strengthened
combinatorial form of a theorem of Alexandser, to the effect that
every polyhedral 2-sphere in 3-space is the boundary of a 3-cell.
To extend the 3~dimensional methods to higher dimensions, we
would need to know, at least, that every polyhedral (wn=1)-gsphere
in p-gpace is the boundary of an n=cell. This remains an un=

(Continued on page 145)



