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PREFACE

Complex interconnected systems, including the Internet, stock markets, and human
heart or brain, are usually comprised of multiple subsystems that exhibit highly
nonlinear deterministic as well as stochastic characteristics and are regulated hi-
erarchically. They generate signals that exhibit complex characteristics such as
nonlinearity, sensitive dependence on small disturbances, long memory, extreme
variations, and nonstationarity. A complex system usually cannot be studied by
decomposing the system into its constituent subsystems, but rather by measuring
certain signals generated by the system and analyzing the signals to gain insights into
the behavior of the system. In this endeavor, data analysis is a crucial step. Chaos
theory and random fractal theory are two of the most important theories developed
for data analysis. Unfortunately, no single book has been available to present all
the basic concepts necessary for researchers to fully understand the ever-expanding
literature and apply novel methods to effectively solve their signal processing prob-
lems. This book attempts to meet this pressing need by presenting chaos theory and
random fractal theory in a unified way.

Integrating chaos theory and random fractal theory and going beyond them has
proven to be much harder than we had thought, because the foundations for chaos
theory and random fractal theory are entirely different. Chaos theory is mainly
concerned about apparently irregular behaviors in a complex system that are gen-
erated by nonlinear deterministic interactions of only a few numbers of degrees
of freedom, where noise or intrinsic randomness does not play an important role,
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xiv PREFACE

while random fractal theory assumes that the dynamics of the system are inherently
random. After postponing delivery of the book for more than two and half years, we
are finally satisfied. The book now contains many new results in Chapters 8—15 that
have not been published elsewhere, culminating in the development of a multiscale
complexity measure that is computable from short, noisy time series. As shown
in Chapter 15, the measure can readily classify major types of complex motions,
effectively deal with nonstationarity, and simultaneously characterize the behaviors
of complex signals on a wide range of scales, including complex irregular behaviors
on small scales and orderly behaviors, such as oscillatory motions, on large scales.

This book has adopted a data-driven approach. To help readers better understand
and appreciate the power of the materials in the book, nearly every significant
concept or approach presented is illustrated by applying it to effectively solve real
problems, sometimes with unprecedented accuracy. Furthermore, source codes,
written in various languages, including Java, Fortran, C, and Matlab, for many
methods are provided in a dedicated book website, together with some simulated
and experimental data (see Sec. A.4 in Appendix A).

This book contains enough material for a one-year graduate-level course. It is
useful for students with various majors, including electrical engineering, computer
science, civil and environmental engineering, mechanical engineering, chemical
engineering, medicine, chemistry, physics, geophysics, mathematics, finance, and
population ecology. It is also useful for researchers working in relevant fields and
practitioners who have to solve their own signal processing problems.

We thank Drs. Vince Billock, Gijs Bosman, Yenn-Ru Chen, Yuguang Fang, Jose
Fortes, John Harris, Hsiao-ming Hsu, Sheng-Kwang Hwang, Mark Law, Jian Li,
Johnny Lin, Jiamin Liu, Mitch Moncrieff, Jose Principe, Vladimir Protopopescu,
Nageswara Rao, Ronn Ritke, Vwani Roychowdhury, Izhak Rubin, Chris Sackel-
lares, Zhen-Su She, Yuch-Ning Shieh, Peter Stoica, Martin Uman, Kung Yao, and
Keith White for many useful discussions. Drs. Jon Harbor, Andy Majda, and
Robert Nowack have read part of Chapter 15, while Dr. Alexandre Chorin has
read a number of chapters. We are grateful for their many useful suggestions and
encouragement. One of the authors, Jianbo Gao, taught a one-year course entitled
“Signal Processing with Chaos and Fractals” at the University of Florida, in the
fall of 2002 and the spring of 2003. Students’ enthusiasm has been instrumental in
driving us to finish the book. He would particularly thank his former and current
students Jing Ai, Ung Sik Kim, Jaemin Lee, Yan Qi, Dongming Xu, and Yi Zheng
for their contributions to the many topics presented here. We would like to thank the
editors at Wiley, Helen Greenberg, Whitney Lesch, Val Moliere, Christine Punzo,
and George Telecki, for their patience and encouragement. Finally, we thank [IPAM
at UCLA and MBI at the Ohio State University for generously supporting us to
attend a number of interesting workshops organized by the two institutions.
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CHAPTER 1

INTRODUCTION

Complex systems are usually comprised of multiple subsystems that exhibit both
highly nonlinear deterministic and stochastic characteristics and are regulated hi-
erarchically. These systems generate signals that exhibit complex characteristics
such as sensitive dependence on small disturbances, long memory, extreme varia-
tions, and nonstationarity. A stock market, for example, is strongly influenced by
multilayered decisions made by market makers, as well as by interactions of hetero-
geneous traders, including intraday traders, short-period traders, and long-period
traders, and thus gives rise to highly irregular stock prices. The Internet, as another
example, has been designed in a fundamentally decentralized fashion and consists
of a complex web of servers and routers that cannot be effectively controlled or
analyzed by traditional tools of queuing theory or control theory and give rise to
highly bursty and multiscale traffic with extremely high variance, as well as complex
dynamics with both deterministic and stochastic components. Similarly, biologi-
cal systems, being heterogeneous, massively distributed, and highly complicated,
often generate nonstationary and multiscale signals. With the rapid accumulation
of complex data in health sciences, systems biology, nano-sciences, information
systems, and physical sciences, it has become increasingly important to be able to
analyze multiscale and nonstationary data.



2 INTRODUCTION

Multiscale signals behave differently, depending upon the scale at which the data
are examined. How can the behaviors of such signals on a wide range of scales be
simultaneously characterized? One strategy we envision is to use existing theories
synergistically instead of individually. To make this possible, appropriate scale
ranges where each theory is most pertinent need to be identified. This is a difficult
task, however, since different theories may have entirely different foundations. For
example, chaos theory is mainly concerned about apparently irregular behaviors in
a complex system that are generated by nonlinear deterministic interactions with
only a few degrees of freedom, where noise or intrinsic randomness does not play
an important role. Random fractal theory, on the other hand, assumes that the
dynamics of the system are inherently random. Therefore, to make this strategy
work, different theories need to be integrated and even generalized.

The second vital strategy we envision is to develop measures that explicitly
incorporate the concept of scale so that different behaviors of the data on varying
scales can be simultaneously characterized by the same scale-dependent measure.
In the most ideal scenario, a scale-dependent measure can readily classify different
types of motions based on analysis of short, noisy data. In this case, one can readily
see that the measure will be able not only to identify appropriate scale ranges where
different theories, including information theory, chaos theory, and random fractal
theory, are applicable, but also to automatically characterize the behaviors of the
data on those scale ranges.

The vision presented above dictates the style and the scope of this book, as
depicted in Fig. 1.1. Specifically, we aim to build an effective arsenal by synergis-
tically integrating approaches based on chaos and random fractal theory, and going
beyond this, to complement conventional approaches such as spectral analysis and
machine learning techniques. To make such an integration possible, four important
efforts are made:

1. Wavelet representation of fractal models as well as wavelet estimation of frac-
tal scaling parameters will be carefully developed. Furthermore, a new fractal
model will be developed. The model provides a new means of characterizing
long-range correlations in time series and a convenient way of modeling non-
Gaussian statistics. More importantly, it ties together different approaches in
the vast field of random fractal theory (represented by the four small boxes
under the “Random Fractal” box in Fig. 1.1).

2. Fractal scaling break and truncation of power-law behavior are related to
specific features of real data so that scale-free fractal behavior as well as
structures defined by specific scales can be simultaneously characterized.

3. A new theoretical framework for signal processing — power-law sensitivity
to initial conditions (PSIC) — will be developed, to provide chaos and random
fractal theory a common foundation so that they can be better integrated.



4. The scale-dependent Lyapunov exponent (SDLE), which is a variant of the
finite-size Lyapunov exponent (FSLE), is an excellent multiscale measure.
We shall develop a highly efficient algorithm for calculating it and show that
it can readily classify different types of motions, aptly characterize com-
plex behaviors of real-world multiscale signals on a wide range of scales,
and, therefore, naturally solve the classic problem of distinguishing low-
dimensional chaos from noise. Furthermore, we shall show that the SDLE
can effectively deal with nonstationarity and that existing complexity mea-
sures can be related to the value of the SDLE on specific scales.

To help readers better understand and appreciate the power of the materials in
this book, nearly every significant concept or approach presented will be illustrated
by applying it to effectively solve real problems, sometimes with unprecedented
accuracy. Furthermore, source codes, written in various languages, including For-
tran, C, and Matlab, for many methods are provided together with some simulated
and experimental data.

Real-world complex data
— have both structured and random components
— behave differently on different scales

— need to characterize behaviors of signals on a
wide range of scales

Unifying theory: Fourier
Multiscale analysis analysis
Common

foundation: PSIC

’ Random Fractal } Deterministic Chaos
Stable laws
and Levy
processes
Long memory Multiplicative Bifurcation and |
processes cascade model routes to chaos |
Glue: Stage-dependent Systems with
cascade model stochastic forcing

Figure 1.1. Structure of the book.



