

TP15 F1

CONCEPTS AND METHODS IN DISCRETE EVENT DIGITAL SIMULATION

GEORGE S. FISHMAN

Associate Professor Department of Administrative Sciences and Institution for Social and Policy Studies Yale University

E7861147

A Wiley-Interscience Publication

JOHN WILEY & SONS, New York · London · Sydney · Toronto

Copyright © 1973, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Fishman, George S.

Concepts and methods in discrete event digital simulation.

Bibliography: p.

1. Digital computer simulation. 2. System analysis. I. Title.

T57.62.F57 001.4′24 73-5713

ISBN 0-471-26155-6

Printed in the United States of America

10 9 8 7 6 5 4 3 2

PREFACE

Although discrete event digital computer simulation has been with us as a research tool for almost two decades, the absence of a balanced and comprehensive account of its essential features has made the teaching of this form of simulation almost entirely a matter of the teacher's choice. No doubt the diversity of topics which discrete event simulation comprises has contributed to this situation. For example, modeling, programming languages, and statistical considerations all represent essential features of discrete event simulation; however, who can claim both equal expertise and equal interest in each of these areas?

This variety of choices has led to a situation in which one cannot tell what a student who claims to have taken a course in simulation knows about the subject. Does he know the alternative ways of modeling a queueing environment? Does he know the differences between GPSS and SIMSCRIPT? Is he familiar with the problem of statistical reliability in evaluating a simulation experiment?

One way to reduce this variability in course content is to provide a textbook that deals with modeling, programming languages, and statistical considerations in some depth. This I have attempted to do in this volume. However, I must quickly add that, although the book includes topics in each area that are necessary to a useful knowledge of simulation methodology, my own interest in statistical considerations has led to a considerably deeper discussion in this area than in the other two. Moreover, I believe that this imbalance in favor of statistics is justified on the grounds that the ability of the average user of simulation to make statistically valid statements about his simulation result is considerably more in doubt than are his abilities to model and program his simulation.

In writing this book I have, wherever possible, described alternative techniques for accomplishing a particular objective. The importance of having alternative methods available cannot be underestimated in simulation work,

where the nature of the situation often dictates the methods that can be employed. In addition, I have included flowcharts for modeling and for computational algorithms to speed the transition from theoretical ideas to practical use. The reader should realize that these algorithms serve a descriptive purpose and that he is free to alter them to accomplish the same objectives in more efficient ways.

The material in this book has been used in both undergraduate and graduate semester courses at Yale. The undergraduate course concentrated on modeling and programming considerations along with selected topics in the statistical area. For an undergraduate course with a prerequisite knowledge of a programming language and an introductory course in statistics, Chapters 1 through 5, Sections 7.1 through 7.6, 8.1 through 8.5, 10.1 through 10.8, and Chapter 12 are recommended. For a graduate course with the same programming requirement but a comprehensive probability and statistics prerequisite, the entire book should be used. Because of the volume of material, an instructor may wish to make Chapters 1 and 2 a reading assignment and begin his lectures with Chapter 3.

I began this book in September 1970 and completed the present draft in August 1972. I am grateful to Professor Robert Fetter, Mr. Philip Kiviat, Mr. Arnold Ockene, and Professor Alan Pritsker, who kindly read a preliminary draft and provided me with their critical comments. The book has benefited substantively from their contributions. My thanks go also to Mr. Joseph Faulkner of UNIVAC, who provided me with the correct coding of the SIMULA example in Chapter 5 and to Mr. William Eddy, who wrote the FORTRAN ANALYS subroutine in Appendix B.

Appreciation is due to Mrs. Linda Oestreich and Mrs. Lynne Black, who typed the major part of the manuscript, and to Mrs. Elizabeth Walker and Mrs. Irene Loukides for their typing contributions. Mrs. Ann Docherty also deserves my gratitude for her programming assistance.

This work was supported by Grant Number T01-HS-00090 from the National Center for Health Services Research and Development as part of the Health Services Research Training Program, Institution for Social and Policy Studies, Yale University.

GEORGE S. FISHMAN

New Haven, Connecticut December 1972

7861147

CONTENTS

Tables		хi
Figures	,	ĸiii
Chapter 1	Introduction	1
Chapter 2	Systems, Models, and System Simulation	4
2.1	2.1.1 System Classification, 82.1.2 System State, 82.1.3 Performance, 10	
2.2	2.1.4 Optimization, 10 Models, 11 2.2.1 Model Classification, 11 2.2.2 Need for and Cost of Detail, 12 2.2.3 Modeling Dangers, 13	
2.3	System Simulation, 14 2.3.1 Identity Simulation, 14 2.3.2 Quasi-Identity Simulation, 14 2.3.3 Laboratory Simulation, 15 2.3.4 Computer Simulation, 16	
^{2.2} Chapter 3		22
3.1 3.2		

CONTENTS vi

Chapter

	3.3	Queueing Models, 25	
		3.3.1 Event Scheduling Approach, 26	
		3.3.2 Data Collection, 32	
		3.3.3 Activity Scanning Approach, 38	
		3.3.4 Process Interaction Approach, 40	
	3.4	More Complex Queueing Problems, 44	
		3.4.1 One Task—Many Servers, 44	
		3.4.2 Two Task—Many Resources, 46	
	3.5	3.4.3 An Inventory Problem, 49 PERT Networks, 58	
	3.6		
	3.7	Multitask-Multiresource Problem, 61 Period Modeling, 62	
		Terrod Wodering, 62	
Chapte	r 4	Programming Considerations and	
		Languages	70
	4.1	Introduction, 70	
	4.2	Data Structures, 71	
		4.2.1 Identification of Objects and Characteristics, 72	
		4.2.2 Relationships Between Objects, 72	
		4.2.3 Object Generation and Manipulation, 73	
	4.3	Simulation Control Programs, 82	
	4.4	Time Flow, 85	
	4.5 4.6	Random Number Generation, 88	
	4.0	Data Collection, Analysis, and Display, 88	
	4.8	Initialization and Termination, 89 Error Messages and Documentation, 90	
	4.9	Simulation Programming Languages in Perspective, 92	
		Languages in Ferspective, 92	
Chapter	5	GPSS/360, SIMSCRIPT II, and SIMULA	98
	5.1	Introduction, 98	
	5.2	GPSS/360, 98	
		5.2.1 Transaction Creation, 103	
		5.2.2 Assignments, 104	
		5.2.3 Queueing and Service, 104	
		5.2.4 Statistics, 105	
		5.2.5 Logical Testing, 106	
		5.2.6 Set Operations, 107	
	5.3	5.2.7 Extended Computing Capability, 108 GPSS Single Server Overving Parkly, 100	
	5.4	GPSS Single Server Queueing Problem, 108 SIMSCRIPT II, 112	
	5.5	SIMSCRIPT II, 112 SIMSCRIPT II Single Server Queueing Problem, 121	
		1 11 Single Server Queueing Problem, 121	

5.7	SIMULA Example, 131
Chapter 6	Statistical Definitions and Concepts 136
6.1 6.2 6.3 6.4 6.5 6.6	Statistical Association, 137 Stochastic Sequences, 143 Stationarity, 148 The Autocorrelation and Spectral Density Functions, 149 A Queueing Problem, 159 Autoregressive Processes, 160
Chapter 7	Random Number Generation 167
7.1 7.2 7.3 7.4	The Importance of Uniform Variates, 167 Considerations in Random Number Generation, 169 A Table of Random Numbers, 170 Pseudorandom Number Generation, 171 7.4.1 Mixed Congruential Generators, 173 7.4.2 Multiplicative Congruential Generators, 175 7.4.3 A Bad Multiplicative Congruential Generator, 176 7.4.4 An Almost Full Period Multiplicative Congruential Generator, 178 k-Tuples, 180 GPSS/360, SIMSCRIPT II, and SIMULA Pseudorandom Generators, 182 Tests of Independence and Uniformity, 184 7.7.1 Chi-Square Goodness-of-Fit Test, 185 7.7.2 Kolmogorov-Smirnov Test, 187 7.7.3 Serial Test, 188 7.7.4 Gap Test, 190 7.7.5 Poker Test, 190 7.7.6 Runs Test, 190 7.7.7 Tests of Correlation, 190
Chapter 8	Stochastic Variate Generation 197
8.1 8.2	Introduction, 197 Continuous Distributions, 200 8.2.1 Uniform Distribution, 200 8.2.2 Triangular Distribution, 202 8.2.3 Exponential Distribution, 203

5.6 SIMULA, 129

		Gamma Distribution with Integral Shape Parameter, 204	
		Beta Distribution, 204	
		Gamma Distribution with Nonintegral Pa-	
		ameters, 208	
	8.2.7 B	Beta Distribution with Nonintegral Param-	
	ei	ters, 209	
	8.2.8 W	Veibull Distribution, 211	
	8.2.9 N	Normal Distribution, 211	
	8.2.10 T	The Chi-Square, t, and F Distributions, 213	
	8.2.11 L	ognormal Distribution, 214	
8.3	Bivariate	and Multivariate Distributions, 215	
	8.3.1 B	Sivariate Exponential Distribution, 215	
	8.3.2 B	Pivariate Gamma Distribution, 215	
	8.3.3 M	Iultivariate Normal Distribution, 215	
8.4	Discrete I	Distributions, 216	
	8.4.1 D	Discrete Uniform Distribution, 219	
		inomial Distribution, 220	
	8.4.3 Be	eta-Binomial Distribution, 221	
		eometric Distribution, 222	
		oisson Distribution, 224	
	$8.4.6$ $N_{\rm c}$	egative Binomial Distribution, 226	
		ypergeometric Distribution, 228	
8.5	Other Dist	tributions, 228	
		runcated Distributions, 228	
	8.5.2 Er	mpirical Distributions, 232	
	8.5.3 To	abled Distributions, 233	
8.6	Autocorre	lated Sequences, 234	
Chapter 9	Input Pa	arameters	242
9.1	Introduction	on 242	
9.2	Estimation		
9.3		stributions, 249	
9.4		of Autoregressive Schemes, 254	
Charatan 10			
Chapter 10	Output	Analysis	262
10.1	Introduction	on, 262	
10.2	Static Simu	ulation Output Analysis, 263	
10.3	Dynamic S	Simulation Output Analysis, 270	
10.4	Initial Con	ditions, 272	
10.5	Final Conc	ditions, 276	

10.6	Data Collection Errors, 278	
10.7	Variance Considerations, 278	
10.8	Variance Estimation, 279	
10.9	Variance Estimator Based on Subsamples in a	
10.10	Single Time Series, 282	
10.10 10.11	An Estimator from Spectrum Analysis, 283	
10.11	Estimation Based on Sample Autoregressive Parameters, 286	
10.12	Confidence Intervals for \overline{X} , 288	
10.13	Nonparametric Confidence Intervals, 293	
10.14	The Autocorrelation Function and Spectrum, 295	
10.15	Determination of Sample Size, 297	
10.16	The Sample State Time Approach, 299	
Chapter 11	The Design of Experiments	310
11.1	Introduction, 310	
11.2	Prior Information, 312	
11.3	Importance Sampling, 317	
11.4	Antithetic Sampling, 319	
11.5	Stratified Sampling, 322	
11.6	Control Variates, 324	
11.7	Comparison of Experiments, 325	
11.8	Validation, 328	
11.9 11.10	More than Two Treatments, 330	
11.10	2 ^k Factorial Experiments, 331 Fractional Factorial Designs, 334	
11.11	Response Surfaces, 335	
11.13	The Value of Foresight, 341	
Chapter 12	Questions and Procedures	347
Appendix A		351
Appendix B		
		362
References		367
Index		379

TABLES

хi

1.	Examples of Systems	4
2.	Examples of Models	12
3.	Tasks and Resources	44
4.	Simulation Programming Languages: Identification Methods	73
5.	Simulation Programming Languages: Relationship Concepts	74
6.	Simulation Programming Languages: Object Generation Methods	75
7.	Simulation Programming Languages: Modeling Approaches	85
8.	Debugging Features	92
9.	GPSS Block Types	100
10.	GPSS Standard Numerical Attributes	101
11.	GPSS/360 Sample Output	114
12.	Single Server Queueing Problem: SIMSCRIPT II Report	
	Routine Statistics	128
13.	Single Server Queueing Problem: SIMSCRIPT II Analysis	
	Routine Statistics	130
14.	Independence, Dependence, and Correlation	143
15.	Example of a Stochastic Sequence	146
6.	Definitions in Stochastic Sequences	147
7.	Definitions and Properties of Stationarity	150
8.	Properties of the Time and Frequency Domains	159
9.	Number Generation Example	172
20.	Test Results for a Multiplicative Congruential Generator	186
21.	Continuous Distributions	201
22.	Discrete Distributions	218
23.	Maximum Likelihood Estimators for Selected Distributions	246
24.	Selected Critical Values of $\chi_{j, 1-\alpha}^2$	250
25.	Intervals for Chi-Square Test of the Exponential Distribution	252
26.	Intervals for Chi-Square Test of the Normal Distribution	252
27.	Sample Tableau for Chi-Square Test of the Normal Distribution	253
	_	

28.	Sampling Properties of Autoregressive Estimates	256
29.	Determination of Autoregressive Order	256
30.	Formulae for Determining Sample Autoregressive Scheme	258
31.	Population Descriptors of Probabilistic Behavior	264
32.	Estimation of m	289
33.	Confidence and Probability Intervals for Queueing Problem	292
34.	Sample Sizes for Normal, Chebyshev, and Unimodal Assumptions	294
35.	Confidence Intervals for Queueing Problem	305
36.	Variance Comparisons for Two Estimators	317
37.	Statistics for the 2 ³ Factorial Experiment	332
38.	Graphical Techniques	337
39.	Treatments for Second-Order Polynomial with Two Factors	341
A1.	Maximum Likelihood Estimates of $\hat{\alpha}$, $\Delta(\hat{\alpha})$, and $\psi(\hat{\alpha})/\Delta(\hat{\alpha})$ for the	
	Gamma Distribution	352
A2.	Percentage Points l_{γ} for the Maximum Likelihood Estimator $\hat{\alpha}/\alpha$	
	for the Weibull Distribution	354
A3.	Percentage Points t_{γ} for the Maximum Likelihood Estimator	
	$\hat{\alpha} \log (\hat{\beta}/\beta)$ for the Weibull Distribution	356
A4.	Unbiasing Factors for the Weibull Maximum Likelihood	
	Estimator of α	358
A5.	Complete Sample Maximum Likelihood Estimates of Parameters	
1.2	of the Beta Distribution	359
A6.	Modified Critical Values of the Kolmogorov-Smirnov Test for	
	Normality with the Maximum Likelihood Estimates Used for	
	Parameters	360
A7.	Modified Critical Values of the Kolmogorov-Smirnov Test of the	
	Exponential Distribution with the Maximum Likelihood Estimate	
	Used for the Parameter	361

FIGURES

1.	Input, System, and Output	6
2.	Examples of System Response	9
3.	Event, Process, and Activity	24
4.	Flowchart Symbols Used in Simulation Models	27
5.	Primitive Arrival Event: Event Scheduling Approach	28
6.	Single Server Queueing Model, Form 1: Event Scheduling	20
	Approach	29
7.	Single Server Queueing Model, Form 2: Event Scheduling	
	Approach	30
8.	Single Server Queueing Model, Form 3: Event Scheduling	
	Approach	33
9.	Data Collection Event	35
10.	Single Server Queueing Model: Activity Scanning Approach	39
11.	Single Server Queueing Model: Process Interaction Approach,	
	Concept 1	41
12.	Single Server Queueing Model: Process Interaction Approach,	
	Concept 2	43
13.	Multiserver Queueing Model: Event Scheduling Approach	45
14.	Two Task—Multiresource Queueing Model: Event Scheduling	
	Approach	47
15.	Two Task—Multiresource Queueing Model: Activity Scanning	
	Approach	50
16.	Two Task—Multiresource Queueing Model: Process Interaction	
	Approach, Concept 1	52
17.	Inventory Model: Event Scheduling Approach	56
18.	PERT Network	59
19.	PERT Network Model: Event Scheduling Approach	60
20.	Multitask-Multiresource Problem: Event Scheduling Approach	62
21.	Blood Bank Simulation Model	65
		xiii

xiv	FIGU	RES

22.	Successor Relationships	78
23.	Timing Routine: Event Scheduling Approach	84
24.	Simulation Control Program: Process Interaction Approach	86
25.	Initialization and Termination Routines: Event Scheduling	
	Approach	91
26.	GPSS Block Diagram Symbols	99
27.	GPSS/360 Coding Form	102
28.	GPSS Block Diagram of Single Server Queueing Problem	109
29.	GPSS Coding of Single Server Queueing Problem	110
30.	SIMSCRIPT II Coding of Single Server Queueing Problem	122
31.	SIMULA Coding of Supermarket with 2 Clerks and 1000	
	Customers	132
32.	Independence and Correlations	140
33.	Waiting Times	144
34.	Two Replications of Queue Length	148
35.	Autocorrelation Function, $\rho_{\tau} = \alpha^{ \tau }$	151
36.	$\rho_{\tau} = 0.25(-0.95)^{ \tau } \cos (3\pi\tau/2) + 0.75(0.75)^{ \tau } \cos (6\pi\tau/7)$	153
37.	Spectral Density Function Corresponding to Fig. 36	156
38.	Estimated Queue Length Correlogram and Spectrum, Constant	
	Service Time	157
39.	Theoretical and Sample Autocorrelation Functions of Queue	
	Length	163
40.	Theoretical and Sample Spectra of Queue Length	164
41.	Pseudorandom Number Plot of U_{i+1} and U_{i+2}	178
42.	Item Demand through Time	199
43.	Beta Variate Generation from $\mathcal{B}e(a, b)$	208
44.	Gamma Variate Generation from $\mathscr{G}(\alpha, \beta)$	210
45.	More Efficient Beta Variate Generation from $\mathcal{B}e(a, b)$	212
46.	Computation of Lower Triangular Matrix C for Generation of	
	Multivariate Normal Variates	217
47.	Binomial Variate Generation from $\mathcal{B}(n, p)$	221
4 8.	Geometric Variate Generation from $\mathcal{G}e(p)$	223
49.	Poisson Variate Generation from $\mathcal{P}(\lambda \Delta t)$	225
50.	Negative Binomial Variate Generation from $\mathcal{NB}(r,p)$, $r=1,2,$	227
51.	Hypergeometric Variate Generation from $\mathcal{H}(n_1, n_2, x)$	229
52.	Examples of Histogram H_i and Sample Cumulative Distribution	
31/00/20	Function $F_x(x)$	266
53.	k and m_3 for Queueing Problem in Section 6.5	285
54.	k and m_3 for Waiting Time Sequence	286
55.	Flowchart for Specified Statistical Accuracy Constraint	298
56.	Iterative Scheme for Estimating μ with Specified Accuracy	300

CHAPTER 1

INTRODUCTION

Discrete event digital computer simulation is now moving into its third decade. As a tool of analysis, it has been used to study many problems. Although queueing-oriented problems account for a considerable share of these, simulation has been used to study subjects as diverse as the turtle population on the Australian Great Barrier Reef [5] and the resolution of conflicts between nations [4]. A review of problems to which simulation has been applied indicates that success in applying it as a research technique depends, to a great extent, on the user's familiarity with simulation modeling concepts, programming language options open to him, and statistical techniques needed to produce desired input behavior and to analyze output behavior. Although the relative importance of each consideration varies with the problem to be studied, experience has shown that all three play important roles.

The purpose of this book is to introduce readers to the modeling, programming language, and statistical aspects of discrete event digital computer simulation as it applies to the study of systems. The book emphasizes methods of accomplishing individual steps in designing, running, and evaluating a simulation. The need for a discussion of simulation methodology was first noted by Conway, Johnson, and Maxwell in their 1959 paper [1]. However, efforts to provide such a discussion have usually been descriptive in character with a relatively low content on the evaluation of alternative methods. The papers by Kiviat on modeling [2] and simulation programming languages [3] are exceptions, being unusually helpful to both the experienced simulation user and the novice.

Before one can understand the meaning of system simulation in perspective, he must be familiar with the formal concepts of a system and a model. Chapter 2 begins with a description of these concepts, followed by a discussion of the alternative forms of system simulation, with special emphasis on computer system simulation.

Chapter 3 discusses system modeling, especially queueing-oriented systems. It describes three alternative simulation modeling methods [3]; the event

2 INTRODUCTION

scheduling approach, the activity approach, and the process interaction approach. Although the first and third of these are more commonly employed in practice, a comparison of the features of all three provides useful insight into discrete event modeling.

While the modeling of a system provides a major step toward organizing one's understanding of it, the actual simulation of the system, using the model on the computer, is the major focus of attention in a simulation study. Many programming considerations must be borne in mind, to facilitate both the programming of the model and its execution on a computer. Chapter 4 describes these programming considerations, and Chapter 5 presents limited discussions of GPSS/360, SIMSCRIPT II, and SIMULA, three commonly employed simulation programming languages. In addition to describing statements in the three languages, Chapter 5 illustrates their use.

Statistical considerations pervade almost all aspects of a system simulation. Since the passage of time also plays an integral role in system simulation, one cannot hope to view most of the statistical aspects of a simulation unless these aspects are cast in appropriate perspective with regard to time. To provide this perspective, Chapter 6 gives an introductory discussion of stochastic sequences. In particular, it describes the concepts of the autocorrelation function and spectrum and illustrates their value for understanding statistical phenomena evolving through time.

Chapter 7 describes the generation of pseudorandom numbers, which form the basis for producing random variates from different distributions during a simulation. The history of pseudorandom number generation is reviewed, presently employed methods are discussed, and testing procedures to reduce the possibilities of nonrandomness and dependence are described. The chapter also suggests procedures to follow, when using pseudorandom numbers, that reduce the chance of their misuse.

Algorithms for generating random variates from a variety of continuous and discrete probability distributions are presented in Chapter 8. Flowcharts are included for most of these. The chapter also gives an account of how to generate autocorrelated time series from moving average and autoregressive representations of stochastic sequences. These time series generation techniques are especially useful in econometric simulations.

Every simulation has input parameters. Sometimes these parameters assume hypothetical values because few, if any, data are available about their true values in the real system. Whenever data are available, however, it behoves the investigator to use them to estimate the parameter values. Naturally some methods of estimation provide more accurate estimates than others do, and consequently we would like to use the "better" methods. Chapter 9 describes methods of deriving maximum likelihood estimators of the parameters of most probability distributions for which generation

algorithms are given in the previous chapter. These estimators have many desirable statistical properties. However, they are sometimes difficult to compute. Accordingly, the chapter describes computational algorithms and gives references to many useful tables, some of which are contained in Appendix A. Chapter 9 also describes estimation methods for autoregressive parameters for use in generating time series, as described in Chapter 8, and in evaluating simulation output, as described in Chapter 10.

Among the statistical topics relevant to computer simulation, the analysis of simulation results has traditionally been one of the least organized. No doubt, this situation has occurred partly because of the diversity of statistical measures that are encountered in simulation. Chapter 10 reviews many of these measures and describes inferential methods applicable to them. In particular, the chapter devotes special attention to estimating how accurate a measure the sample mean of an autocorrelated stochastic sequence is of the true mean. This constantly recurring problem in simulation can be solved in one of the several ways that Chapter 10 describes.

Whether we realize it or not, every study that we undertake has an implicit experimental design associated with it. This design relates to how the study is conducted, and it is not difficult in most instances to identify one experimental design that meets the requirements of the study better than others do. Chapter 11 discusses design considerations in the peculiar environment of computer simulation. In particular, it dwells on methods of making individual experiments efficient with regard to providing useful results and also stresses the need to select the experiments to be performed with an eye toward the same efficiency considerations. Chapter 12 provides a guide of important steps for the conscientious simulation user to follow.

As the reader may perceive by this time, discrete event digital computer simulation of systems covers many topics. For each of these an established literature exists. By including these topics here we hope to give the investigator wishing to use simulation a background that has both breadth and depth.