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Mechanics are the Paradise of mathematical science,
because here we come to the fruits of mathematics.

LEONARDO DA VINCI
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To Mary



Preface

This book is intended for use in courses of one semester or two quarters on
the dynamics of particles and assemblies of particles, including rigid bodies.
Although the book begins with the most basic concepts, a useful assimilation
of its contents requires a previous exposure to introductory mechanics based
in calculus. No fine details of that exposure must be remembered; it is
assumed only that the student has enough familiarity with the fundamental
concepts to appreciate the need for careful discussions of the physical and
mathematical aspects of classical dynamics. Differential equations and par-
tial derivatives are used throughout but are applied in “cookbook” fashion.
Vectors also are essential, beginning with Chapter 4, and a detailed discussion
of them is given in the Mathematical Appendix along with material on
rotations and curvilinear coordinate systems.

The central theme is that classical dynamics is a self-consistent discipline
of physics, with many applications in a number of its modern subfields, which
today are of increasing importance. These include geophysics, atmospheric
physics, space physics, physical oceanography, and environmental physics,
all of which are represented significantly in the textbook and in the problems.
Some examples are the pendulum seismograph, atmospheric and oceanic
circulation, artificial Earth satellites, and the settling of particulates. I hope
that their inclusion will broaden the perspective of the student and stimulate
the lectures of the teacher.

The plan of the book is to discuss the physical bases of dynamics—
Newton’s Laws and the conservation theorems—and to illustrate them
extensively through a discussion of one-dimensional motions in the first
three chapters. In Chapters 4 and 5 the essential features of motion in space
are surveyed, including the use of curvilinear coordinates, the concept of
angular momentum, the two-particle problem, the Kepler problem, and the
theory of elastic scattering. Chapters 6 through 9 discuss important topics
from which the teacher may choose material to complete his lectures: as-
semblies of particles (including molecular mechanics), rotating frames of

vii
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reference, special relativity, and an introduction to Lagrangian and Hamil-
tonian mechanics. To provide the broadest possible choice of classroom
subject matter, four “Special Topics” also have been added following
Chapters 1 to 3, and 8. Problems relating to these topics have been included
in the sets at the ends of those chapters. Answers and hints for a// of the
problems are given at the end of the book.

The manuscript was diligently typed by Ms. Linda G. Smith, to whom
I am greatly indebted. I also express my appreciation to Professors Eugen
Merzbacher, John McCullen, and Robert Eisberg for their helpful reviews.
The responsibility for errors or unclear passages is my own, and I would
appreciate students calling them to my attention.

Garrison Sposito



1

The Foundations
of Classical
Dynamics 1

2

The Motion of a
Particle in One
Dimension.

I. Conservative
Forces 27

3

The Motion of a
Particle in One
Dimension.

I1. Nonconservative
Forces 61

7962092
by

Contents

‘/\éyu[ b“r -H.\ %{“

{ viigy

1.1 The Newtonian program for dynamics I
1.2 An example: The freely falling particle 10

1.3 Conservation theorems and the
Newtonian program /5

For further reading 20
Problems 21

Special Topic 1. Newton’s conception of

force 23

2.1 Motion in a uniform field 27

2.2 Turning points 30

2.3 Motion in a nonuniform field 3/

2.4 The linear harmonic oscillator 37

2.5 The linear oscillator in a uniform field 44
For further reading 47
Problems 47

Special Topic 2. Fourier series and the potential
well 53

3.1 Dissipative forces 61
3.2 Particle-size fractionation by gravity 67
3.3 Frictional slowing of a projectile 71

3.4 Dynamics of the pendulum seismograph:
The damped linear oscillator 73




x Il CONTENTS

4

Bounded Motion in
Three Dimensions 103

5

Unbounded Motion in
Three Dimensions 139

6

Assemblies of
Particles 165

3.5
3.6

Special Topic 3. Oscillations in an electric

4.1

4.2

43
4.4
45
4.6
4.7

5.1
5.2
5.3
54

6.1
6.2
6.3
6.4
6.5

‘For further reading 88

The driven, damped oscillator 78 -

Periodic, impulsive, and exponential driving
forces 80

Problems &8

circuit 95

Classical dynamics in
three-dimensional space 103

Symmetry and the concept of angular
momentum /09

The isotropic oscillator 174

The problem of two particles 717 |
Orbital motion and the effective potential / 2()1
The Kepler problem /23 :
Artificial Earth satellites /31
For further reading 134

Problems 135

Elastic collisions 139 |
The scattering cross section 147 \
Hard-sphere scattering 153 "
Coulomb scattering 156
For further reading 161
Problems 161

Coupled harmonic oscillators 165
Normal coordinate analysis 174
The vibrating water molecule 180
The conservation theorems /88
The rigid body 192




s

Noninertial Frames of
Reference 205

8
The Special Theory of
Relativity 225

9

Hamilton’s
Principle 257

CONTENTS M «xi
6.6 Dynamics of a space vehicle in its
coasting phase /98
For further reading 200
Problems 200

7.1 Dynamics in a rotating frame of reference 205
7.2 Motion relative to a rotating planet 217/
7.3 The Foucault pendulum 279

For further reading 221

Problems 222

8.1 Galilean and Lorentz invariance 225
8.2 Space-time coordinates 232
8.3 Relativistic energy 239
8.4 Motion in a uniform field 240
8.5 Relativistic collision theory 245
For further reading 250
Problems 251

Special Topic 4. The relativistic Kepler
problem 252

9.1 A minimum principle for dynamics 257

9.2 Hamilton’s principle for conservative
motion 262

9.3 Conserved quantities and Lagrange’s
equations 268

9.4 Hamilton’s principle for nonconservative
motion 27/

9.5 Hamilton’s equations 277

9.6 The Lagrangian and Hamiltonian programs
for dynamics 286

For further reading 289
Problems 290




xii l CONTENTS

Mathematical
Appendix 292

A.1 Vectors in the first three dimensions 292
A.2 Linear transformations in vector spaces 302

A.3 Curvilinear coordinate systems 313

Answers and Hints for the Problems 319

Index 333




7962092

1

The Foundations of
Classical Dynamics

1.1 THE NEWTONIAN PROGRAM FOR DYNAMICS

lassical dynamics began with the publication, in 1687, of Isaac Newton’s

monumental treatise, Philosophiae Naturalis Principia Mathematica." In

this book Newton set down three postulates which he believed would make
possible the mathematical description of the motion of any single particle or
collection of particles. These famous postulates are familiar from introductory
physics as Newton’s Laws of Motion. We know today that they are only very good
approximations to the true axioms of particle dynamics, which must account for
the quantization of energy and the Einsteinian principles of relativity. Nonetheless,
because the degree to which it differs in its predictions from what is known to be
correct theory is in practice often insignificant, and because its conceptual frame-
work is easily related to common experience, we shall be on excellent ground to

! The Mathematical Principles of Natural Philosophy, revised translation by F. Cajori, University
of California Press, Berkeley, 1960.



2 B THE FOUNDATIONS OF CLASSICAL DYNAMICS

begin our discussion by considering in detail what we shall call Newton’s program
for dynamics.

In order that Newton’s Laws of Motion be understood with the least ambiguity,
we shall give a few prefatory definitions of terms that should be recalled from
introductory mechanics. These terms are as follows.

Particle A particle is any physical object whose motion can be described fully
by its position in space and by its velocity as functions of the time. Particles are the
direct concern of Newton’s Laws. An assembly of particles, which usually requires
more to describe its motion than just a single position and velocity, is an indirect
concern of Newton’s Laws of Motion in that its behavior may be considered by
extending the Laws.2

Position We shall consider this quantity to be a continuous function of the
time that possesses at least two derivatives. The position of a particle is measurable,
in the simplest case, by means of a ruler and a clock and may be represented
geometrically by a succession of points in a suitably chosen reference frame.
Ordinarily each of these points is specified by a set of three real numbers called
coordinates. However, we shall suppose initially, for the sake of mathematical
simplicity, that just one spatial coordinate is enough to determine the position of a
particle. In this way the position becomes what is called a “scalar function” and the
rules of conventional algebra apply. Whenever the more general situation obtains,
the position becomes a “vector function” and the rules of vector algebra must be
used.® We shall consider this mathematical complication in Chapter 4.

Velocity This quantity is the first derivative of the position with respect to the
time. In the special case of a scalar position function we have, therefore,

[x(t + At) — x(t):| _dx

o) = lim (1.1)

At—0

At T

in a conventional calculus notation, where x(t) is the position. The velocity () is a
continuous function of the time ¢ and possesses at least one derivative. A sense of
direction is always associated with it and, in the case of v(t) given by Equation 1.1,
that direction is designated by an implicit plus or an explicit minus sign appearing
before the numerical value. The plus sign will be taken generally to mean either
“up” or “to the right,” depending on the orientation of the frame of reference, and
the minus sign will mean either of the opposite directions relative to the origin of
the coordinate x(t). The velocity can be measured by assigning its direction to be

% For example, Newton himself showed (Principia, pp. 193—195, Cajori translation) that it is possible
to regard a planet as a particle when we consider its orbit about the sun, if the planet is a perfect
sphere.

3 These rules are discussed in section A.1 of the Appendix.
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the direction of motion of the particle and by calculating the slopes of the lines
tangent to the graph of x(t), in keeping with the usual geometric interpretation of a
derivative, in order to get its numerical values (see Figure 1.1).

x(t)

X2TN
tg—ty

v(to) =

line tangent
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FIGURE 1.1. The velocity v(¢,) is the slope of the line tangent to x(f) at ¢ = ¢,.

Acceleration Acceleration is the first derivative of the velocity with respect to
time and is also a continuous function of the latter variable. Conventionally we have

[U(t + At) — v(t)] _ @

=1 =
a(t) m s 5

At—0

(L.2)

for the acceleration a(t). As with the velocity, acceleration has both a numerical
magnitude and an associated direction. The magnitude is measured in a way
analogous to that for determining the velocity. The direction assigned is that direc-
tion in which the velocity is changing. The direction of the acceleration, therefore,
need not have anything to do with the observed direction of motion of the particle.

The quantities position, velocity, and acceleration are referred to as kinematical
quantities because their definitions involve only the fundamental ingredients of
motion: length and time. In Table 1.1 the kinematical quantities are listed along
with a recounting of their dimensions and their units of measure in the three most
commonly used systems. The definitions of the systems of units and the relations
among them are assumed to be known from introductory physics.
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TABLE 1.1 The Kinematical Quantities Important in Classical Mechanics

Unit
American
Quantity Dimensions . Sl CGS Engineering

Length L ' meter (m) centimeter (cm) foot (ft)
Time T second second (s) second
Position L m cm ft
Velocity L= m/s cm/s ft/s
Acceleration Lif=* m/s? cm/s? ft/s?

1foot = 0.3048 meter (exactly). 1 centimeter = 0.01 meter.

Now we are in a position to state and explain Newton’s Laws of Motion. We
shall not be presenting these laws exactly as they were given in the Principia, but
instead we shall express them in a form that reflects the contemporary status of
classical dynamics. A discussion of Newton’s original conceptions regarding the
Laws of Motion will be found in Special Topic 1 at the end of this chapter.

THE FIRST LAW It is always possible to find a frame of reference in which a particle,
free of influence from matter and radiation, is moving with a constant velocity.

A glance at the First Law in this form shows that it deals with an ideal situation,
since it is not possible to isolate completely any physical object from the rest of
the universe. However, no difficulty in interpretation should develop as long as it
is remembered that every physical law or postulate has validity only insofar as it
agrees with experience within some predetermined level of tolerance for error. In
practice the influence of surrounding matter and radiation can be minimized to
whatever extent is desired and the First Law can be understood as an extrapolation
to vanishing influence. Then it states that we can always find a “preferred” frame
of reference in which the particle under consideration will be moving with a con-
stant velocity (i.e., with a constant speed in a fixed direction). Evidently, if one such
frame of reference exists, an infinite number of them exists. This is because all
frames moving at constant velocity with respect to one another would yield an
observation of constant velocity (including, possibly, zero velocity) for a particle
moving that way in any one of them. Newton (and before him Galileo) believed
that this uniform motion was the “natural” or “equilibrium” motion of a free
particle and that it would be observed at least in a limiting sense within a certain
class of frames of reference. These special frames of reference are called inertial
frames. Inertia is the name given to the “inherent tendency” of a free particle to move
with constant velocity.

It should be clear, even from these few remarks, that the First Law has much the
same character as a definition. When a free particle is observed to move uniformly,
that motion is defined as the natural one and the frame of reference in which it is
observed is deemed a member of the preferred inertial class. What remains quite
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vague about the First Law is the reason the inertial frames are preferred and the
precise meaning of the phrase “free of influence.” These questions are, in fact, only
two faces of the same problem and are answered admirably by the Second Law.

THE SECOND LAW  The influence of matter and radiation on a particle is manifest
in the form of a force. A force causes the velocity of the particle to change in such
a way that the time rate of change of the velocity is in the direction of and is propor-
tional to the force.

The Second Law tells us that forces are the purveyors of all the interactions in the
universe. These quantities possess both magnitude and direction. They bring about
changes in the velocity of a particle, that is, they cause a particle to accelerate. It
is now clear why inertial frames of reference are the preferred ones. Relative to
those frames, a particle unaffected by forces moves with constant velocity. If a force
should act on the particle, its velocity changes and we may attribute all of that
change to the force, according to the Second Law. In some other, noninertial
frame of reference, the free particle would not move with constant velocity and we
could not unambiguously determine the influence of matter and radiation on it by
invoking the concept of force.

The force acting on a particle generally may be represented as a function of the
position, velocity, and time. In the special case we now are considering, this function
is a scalar one, but it is associated with a direction according to the sign convention
that we previously discussed for acceleration. With this stipulation we can write the
Second Law in the mathematical form

F(x, v, t) = ma(t) (1.3)
or, by Equation 1.2,
dv
F t)=m— 1.4
(x,0,8) = m— (14)

where m is simply a constant of proportionality. As is well known, the constant m
is supposed to be a number characteristic of the particle itself and is called the mass.
Since the force F(x, v, t) and the acceleration a(t) always have the same direction
the mass is always a positive number. Moreover, the algebraic form of Equation
1.3 suggests that, for a given, fixed magnitude of the force, small accelerations are
associated with large masses, and vice versa. It follows that the mass must represent
the relative degree to which a particle can resist force, a large mass being character-
istic of a particle difficult to accelerate. But unaccelerated motion reflects the
inertia of a particle, according to what was stated previously. Therefore, the mass
of a particle should be a numerical measure of its inertia. Newton was aware of the
common experience that bulky objects were difficult to accelerate and was led to
equate mass with the quantity of matter in an object. But the better definition is
the one related to inertia, since it develops in a straightforward way from the first
two Laws of Motion and is independent of whatever range of experience with



