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Preface

This volume is based on the contributions, after a rigorous peer review process,
for a workshop on Nonlinear Model Predictive Control that took place on June
2-6, 1998, in Ascona, Switzerland. The workshop was the first international con-
ference solely devoted to Nonlinear Model Predictive Control. Nonlinear Model
Predictive Control is presently viewed as one of the most promising areas in au-
tomatic control. This is partly due to the increasing industrial need for advanced
control techniques, that address explicitly the process nonlinearity and operat-
ing constraints, and the ever-demanding control performance requirement. Since
the research on Nonlinear Model Predictive Control is at its early stage, many
theoretical and implementation issues remain open and very few industrial ap-
plications have been reported. With this workshop we wanted to bring together
internationally recognized researchers to assess the current status and to discuss
future research directions. A wide range of important topics, from problem formu-
lation, computations, and algorithms to estimation, modelling, and identification
to closed-loop stability and robustness to applications, is covered. We trust that
this volume will contribute to shaping the future research on Nonlinear Model
Predictive Control.

This workshop was made possible by significant financial contributions from a
number of sponsors. We would like to especially thank the Centro Stefano Franscini
of ETH, the Swiss National Science Foundation (Schweizerischer Nationalfonds),
the US National Science Foundation (NSF), and the Swiss Society for Automatic
Control (SGA) for their generous support. We are also indebted to Rolf Findeisen
and Alberto Bemporad of the Automatic Control Lab at ETH for the boundless
energy they have put into preparing the workshop. Last but not the least we want
to express our gratitude to the participants of the workshop for a most stimulating
event and especially to the authors of this volume for allowing us to put together,
as we hope, a high quality book.

FRANK ALLGOWER, ETH ZURICH
ALEX ZHENG, UNIVERSITY OF MASSACHUSETTS—AMHERST
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Stability and Robustness of Nonlinear Receding
Horizon Control

G. De Nicolao, L. Magni and R. Scattolini

Abstract. The main design strategies for ensuring stability and robustness of
nonlinear RH (Receding-Horizon) control systems are critically surveyed. In
particular, the following algorithms with guaranteed closed-loop stability of
the equilibrium are considered: the zero-state terminal constraint, the dual-
mode RH controller, the infinite-horizon closed-loop costing, the quasi-infinite
method, and the contractive constraint. For each algorithm, we analyse and
compare feasibility, performance, and implementation issues. For what con-
cerns robustness analysis and design, we consider: monotonicity-based robust-
ness, inverse optimality robustness margins, nonlinear Ho, RH design, and a
new nonlinear RH design with local Hoo recovery.

1. Introduction

Receding-Horizon (RH) control, also known as model predictive control, owes its
success to the simplicity of its rationale which is well suited to deal with nonlinear-
ities and constraints. In discrete-time, the basic idea is to determine the current
control u(t) by solving a finite-horizon optimization problem over the interval
[t,t+ N]. At the next time instant ¢+ 1, the new control u(t+ 1) is found by trans-
lating the optimization horizon and solving a new problem over [t + 1,t + N + 1].
Being optimization-based, the RH scheme can allow for nonlinearities and con-
straints much more straightforwardly than other methods. In view of the increased
efficiency of the hardware, there are more and more plants on which RH control
can be implemented by solving the finite-horizon optimization on-line.

An important caveat of RH control is that closed-loop stability is not guaran-
teed for a generic finite-horizon cost function, as it was well illustrated by Bitmead,
Gevers and Wertz [3]. In the linear case, the first stability result was obtained by
complementing the cost function with a terminal zero-state constraint, see e.g. the
work by Kwon and Pearson [22]. Rawlings and Muske removed, at least for the
stable modes, the need of equality constraints, by introducing a terminal penalty
equal to the infinite-horizon cost due to zero control [34]. It is interesting to note
that a fairly general stability theory for linear RH control can be developed by
referring to the monotonicity properties of a suitable difference Riccati equation
initialized with the terminal penalty matrix [3].
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Although there is a well-established theory in the linear case, its importance
is diminished by the fact that, in absence of nonlinearities and constraints, RH
control is hardly better than infinite-horizon (I H) linear quadratic (LQ) control.
This does not happen in the nonlinear case, because I H optimization becomes
computationally intractable.

An important exception is given by LG RH control with constraints. In
such a context, Sznaier and Damborg [40] showed that the IH optimal control
law can be found as the solution of a finite-horizon problem where the terminal
penalty is equal to the I H cost of the unconstrained L() problem. Other contribu-
tions along this line are due to Scokaert and Rawlings [35] and Chmielewski and
Manousiouthakis [11].

For nonlinear systems Chen and Shaw [4], Keerthi and Gilbert [21], and
Mayne and Michalska [27] showed for discrete and continuous systems that the
terminal zero-state constraint guarantees closed-loop stability also in the nonlinear
case. However, the presence of the terminal equality constraint places an heavy
requirement on the on-line optimizing controller. This motivated the development
by Michalska and Mayne of the dual-mode RH controller, which replaces the
equality constraint with an inequality one, namely that z(t + N) belongs to a
suitable neighbourhood of the origin where the nonlinear system is stabilized by
a linear control law. The scheme is called “dual-mode” because, when such a
neighbourhood is eventually reached, the RH controller switches to the linear one
[29]. Another stabilization method worked out by Yang and Polak is based on
a terminal contractive constraint requiring that the norm of the terminal state
z(t + N) is sufficiently smaller than the norm of z(t) [43].

More recently, schemes have been proposed that combine a terminal penalty
with a terminal inequality constraint. In particular, Parisini and Zoppoli, and Chen
and Allgower have shown that stabilization can be enforced by a suitable quadratic
terminal penalty [32], [5]. On the other hand, De Nicolao, Magni and Scattolini
established closed-loop stability of the equilibrium using a (nonquadratic) terminal
penalty equal to the infinite cost due to a locally stabilizing linear control law [17].
The most recent developments concern the design of RH controllers of Ho, type
that are capable of achieving guaranteed robustness margins [7], [25].

The main purpose of the present contribution is to provide a critical survey of
the existing literature on stability and robustness of (state-feedback) RH control
schemes. The emphasis is on the key ideas rather than on mathematical technical-
ities. This justifies some simplifications, the use of conservative assumptions, and
the lack of formal proofs.

The paper is organized as follows. In Section 2, some preliminary definitions
and notions are introduced. Section 3 is devoted to the analysis of the alternative
RH stabilization schemes. The results concerning robustness analysis and synthesis
are reported in Section 4. Some concluding remarks end the paper.
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2. Preliminaries
Consider the time-invariant nonlinear discrete-time system
(k+1) = f@k),uk), o(t)=2, k=t (1)

where z(k) € R is the state, u(k) € R™ is the input, f(-,-) is a C? function of
its arguments, and f(0,0) = 0 (the origin is an equilibrium point). The state and
input vectors are subject to the constraints

z(k)e X, ulk)eU, k>t (2)

where X and U are compact sets of R and R™ respectively, both containing the
origin as an interior point.

Consider now a control law u = k(z) with £(0) = 0. The associated closed-
loop system is

e(k+1) = Fzkk)) z{t)=%, k>t (3)

where F(z) := f(z,k(x)). In the following, x(-) will be said to be stabilizing if
the origin of (3) is an asymptotically stable equilibrium point (for every ¢ > 0,
there exists & such that, if ||Z|| < &, then ||z(k)|| < & and limg_, ||z(k)|| = O,
where z(k) is the solution of (3)). Hereafter, with some abuse of terminology, the
term “stable” will be used for short in place of the more correct “asymptotically
stable”. The origin is said to be an exponentially stable equilibrium of (3) if there
exist constants 7, a, b > 0 such that, whenever ||Z|| < r, it results that [|z(k)| <
ae k=) ||z||, VE > t.

A sufficient condition for the origin to be exponentially stable is that the
linearized matrix dF/dxz|,_, has all its eigenvalues inside the unit circle. In the
following, we will not discuss exponential stability properties explicitly, but this
property will implicitly follow whenever the linearized closed-loop is found to be
stable.

Throughout this chapter, our aim is to design a state-feedback controller that
stabilizes (1) around the origin complying with the constraints (2).

2.1. Linear quadratic control (LQ)

The easiest (and most used) way to stabilize (1) is by means of a linear control
law designed on the base of the linearization of (1) around the equilibrium. To this
purpose, let

_of _of
A_ax, B_au

x=0,u=0 z=0,u=0

Assumption: In order to design the linear controller, it is assumed that the pair
(A, B) is stabilizable. O

The idea is to find some K such that A + BK is stable and then apply the
control law u = Kz to the nonlinear system (1). In particular, K can be found by
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minimizing the infinite-horizon quadratic cost function

Jra(z,u()) =Y {x(k)' Qa(k) + u(k) Ru(k)} (4)
k=t
where Q > 0, R > 0, subject to the linearized dynamics
x(k+1) = Az(k) + Bu(k), z(t)=z, k>t (5)

As is well known, the solution to the above LQ problem is given by the linear
state-feedback

u(k) = KXz (k), k>t ' (6)
where
K'? = (R+ B'P,wB)"'B'P A

and P, is the (unique) nonnegative definite solution of the ARE (Algebraic Riccati
Equation)

P=APA+Q-APB(R+BPB) 'BPA (7)
When (6) is applied to (1), we obtain the closed-loop system
z(k+1) = f(z(k), K*9z(k)) z(t)=z, k>t (8)

Proof of stability: As is well known, the stability of the origin of (8) is proven
by using V(z) = 2’ Poox as a Lyapunov function [42].

Output admissible set: Due to the stabilizability assumption, the origin is
a stable equilibrium point of (8) with a nonzero-measure domain of attraction.
However, the controller design completely ignores the constraints (2). Therefore,
for a given Z, there is no guarantee that z(k) and u(k) defined by (8), (6) will
satisfy (2). Hereafter, the term output admissible set [19], referred to the closed-
loop formed by (1) joined with the state feedback

u(k) = k(z(k)) )

will denote an invariant set X which is a domain of attraction of the origin and such
that z € X implies that z(k), u(k), k > t defined by (1), (9) satisfy (2). Moreover
u(k), k > t, is called a feasible control sequence. In particular, the maximal output
admissible set of the controller (6) will be indicated by X (K~®). Needless to say,
X (KEQ) may well be unsatisfactorily small, since both the nonlinear nature of the
system and the presence of constraints have been neglected.

Under a computational viewpoint, the evaluation of X (KL9) for a nonlinear
system may be difficult (or even impossible). It is however possible to obtain an
inner bound by computing an output admissible set given by a suitable level set
of a local Lyapunov function for the linearized system, see [29] and also [6], [5]

Performance: It is apparent that the linear design optimizes performance
only close to the equilibrium point. The acceptability of the performance clearly
depends on how well the system (1) can be approximated by its linearization (5)
in the considered region.
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Implementation: The calculation of the gain KL% requires only the (off line)
solution of the ARFE (7), which is a standard task.

2.2. Infinite Horizon Nonlinear Controller (IH)

The limitations of the L@ controller motivate the search for more sophisticated
approaches capable of improving both the output admissible set and the perfor-
mance. The most direct way is to take into account explicitly both nonlinearity
and constraints in the minimization of (4). Along this direction, the I H (Infinite
Horizon) nonlinear optimal controller is obtained by minimizing (4) subject to (1)

and (2).
Assumption: As is the case of the LQ controller, we assume that (A, B) is
stabilizable. O

The solution of the THNOCP (I H Nonlinear Optimal Control Problem) is
given by a nonlinear state-feedback

u(k) = &' (z(k)) (10)

which stabilizes the origin, see e.g. [21]. In the following ¢!# (k,z) := x(k) where
x(k) is the solution of (1) subject to (10).

Proof of stability: Closed-loop stability of the origin is proven by using V(z) =
J7y (z) as a Lyapunov function where

Jig () = Jig(z, 6" (" (-, 2)))

denotes the minimal value of the cost function, see e.g. [21].

Output admissible set: When z € X (K ?) the control sequence u(k) =
K'Cz(k), k > t, is always an admissible solution for the THNOCP. Conse-
quently, the output admissible set of the ITH NOC P, hereafter denoted by X is
nonempty and such that X7 O X (KE@Q). In the present context, we can regard
XTH a5 the largest achievable output admissible set.

Linearization: Rather expectedly, it can be shown that the linearization of
k! (x) coincides with K9 i.e.

dr ()

= K<,
dx

2=0
This observation can help in the tuning of the design matrices Q@ and R . In fact,
a reasonable procedure is to adjust @@ and R with reference to the L@ problem
(4), (5) by means of well-established methods until the (linearized) closed-loop
performance becomes satisfactory. This is clearly easier than tuning Q and R by
extensive trials on the nonlinear model (1).

Performance: Assuming that the weights @ and R have been properly chosen,
the performance of the IH controller is “optimal” by definition.

Implementation: This is the main problem with IH control. For a generic
nonlinear system, analytic solutions of the THNOCP do not exist and the at-
tempt to approximate the IH cost functional by means of a finite-horizon one
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(by truncating the series in (4)) leads to a hard optimization problem in &an be done
dimensional space.

3. Nonlinear RH control .
cond step 18

The difficulties inherent in the implementation of the I H controller motiva
development of control strategies based on FH (Finite-Horizon) optimizati
particular, letting w; ;4 n—1 := [u(t), u(t +1),...u(t + N — 1)], we will coZ is a neighl

cost functions of the type calling (14),
t+N—1 eafter terme

Jri (@, ut iy N—1, N Z {2(k)' Qx(k) + u(k) Ru(k)} + Vy(z(t + N))z) and Xy.

s of Vy(z) a

to be minimized with respect to u;tun—1, subject to (1), (2) as well as t

: ; he zero-stat
terminal constraint

lea is to let

z(t+N)e Xy CR" m becomes

As discussed below, the different algorithms are characterized by the choices STC (Zero
terminal penalty function Vy(x) and the terminal region X;. For computaontrol law v
reasons the optimization horizon N should be as short as possible, compatible H method
the desired performance and output admissible set. 28], [36] for
Associated with (11), (12) it is possible to define an RH (Receding HoAssumption
control strategy in the usual way: at every time instant ¢, define z = z(tX°(N) of t
compute the optimal solution u?,, 5, for the FH problem (11) subject t¢ < k < t+-
(2), (12); then apply the control u(t) = u°(z) where u°(Z) is the first columch that th
uf 4 y_1- Although the F'H minimization of (11) has to be performed at eachProof of stz
instant, this is much more viable than solving an I H problem. -operty (15
The main challenge is to guarantee closed-loop stability and performancg Jpu (Z,u

for small values of N. Along this direction, we can take advantage of the expernow the pr
gained in the RH control of linear systems [22], [2], [3], [34], [11]. In particu":N) = 0. .
is well known that, if Vy(z) = 0 and Xy = R, for a given N it may well hiyofor the ne
that the RH controller yields an unstable closed-loop system. Nevertheless, Jp (T, ¢
proper design it is possible to ensure closed-loop stability with a finite horizoy implies tl
In the LQ case a fairly complete stability theory is available which is bz, N) < J¢

on the so-called Fake Riccati analysis. The main point is to choose Vy(z)Qutput ad
Xy so as to force the monotonicity of the solution of a relevant difference Rijed) contro

equation. Once monotonicity is established, it follows that ur, there is
Jpg(z,N)= min Jrg(z,utt4n-1,N) L) of the

Yttt N -1 aization hc

is a Lyapunov function for the closed-loop. Linearizat

An analogous rationale can be extended to the nonlinear case. In fact,
closed-loop stability of most RH schemes is proven by showing that Jg ., (z, !

a Lyapunov function. For this purpose, the main point is to demonstrate tha .
iides wit
T2n(f(z,u°(@)), N) < Jpu (@, N) oo
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oroblem in #an be done in two steps. First, by optimality it always holds that

Jeu(f(z,u(z)), N — 1)

= Jpu(z,N)—2'Qz — u°(z) Ru’(z) < J2g(z, N) (14)
. cond step is to show that
oller motiva o o —
) optimizati Jru(§. N) < Jpp(§,N —1), VE€E (15)

- we will coE is a neighbourhood of the origin in B™. From (15), letting & = f(z,u°(x))
calling (14), one sees that (13) follows. Now, the inequality (15), which will
eafter termed as monotonicity property, is fulfilled only for a suitable choice

(z(t + N))z) and X;. In the remaining part of this section we will examine different
s of Vy(x) and Xy that enforce stability.

as well as
@ the zero-state terminal constraint (Z5)

lea is to let Vi(x) = 0 and X; = {0} . In this way, the FH minimization
m becomes equivalent to the minimization of (11) subject to (1), (2) and
he choices STC' (Zero-State Terminal Constraint) z(t + N) = 0. The corresponding
r computapntrol law will be indicated as u(k) = xkZ°(x(k)). Historically, this was the
compatible H method with guaranteed stability, see [22] for linear systems and [4], [21],
28], [36] for nonlinear systems.
ceding HoMssumption: For a given integer N > 0, there exists a nonempty neighbour-
€ T = x(t X°(N) of the origin such that VZ € X¢(N) one can find a control sequence
 subject t¢ < k < t+ N —1 driving state of (1) to the origin in N steps, i.e. z(t+N) = 0,
first columich that the constraints (2) are satisfied Vk € [t,t + N — 1].
1ed at eachProof of stability: The keystone of the proof is establishing the monotonic-
operty (15). To this purpose, let uy 44 ny—o be the optimal solution mini-
erformanceg Jrp (Z,us 44 nv—2, N — 1) subject to (1), (2) and z(t + N — 1) = 0. Con-
f the expernow the problem of minimizing Jrp (Z, w1+ n—1, V) subject to (1), (2) and
I particu”IN) = 0. It is clear that @ n 1 = [u?; n_2 0] is an admissible so-
ay well hijefor the new problem and moreover (recalling that z(t + N — 1) = 0) we
rertheless, Jpy (&, 14 n—1, N) = Jpu (2,48, y 1, N = 1) = Jg(Z, N —1). Since opti-
lite horizoy implies that Joy(Z,N) < Jpu(Z, 4,4+ Nn-1, N), the monotonicity property
which is bz N) < Jo.,. (2, N — 1) follows.
ose Vy(z)OQutput admissible set: The output admissible set coincides with the (con-
ference Rised) controllability region X¢(N). Note that X¢(N) may be “small”. In par-
ir, there is no guarantee that X¢(NV) is larger than the output admissible set
Lq) of the LQ controller. Of course, X¢(N) grows with IV, but increading the
nization horizon has computational drawbacks.
Linearization: The linearization

e. In f:

Jan fact, K5 _ dk?S ()
res, = ==
strate tha, Z=0

sides with the gain matrix of the linear RH controller associated with the
mization of the FH cost function (11) (with V(x) = 0) subject to (5) (the



