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Preface

Preface to second edition

The original first edition intentionally avoided the topic of eddy-resolving, computer
simulation. The crucial role of numerics in turbulence simulation is why we shied away
from the topic. One cannot properly introduce direct numerical simulation or large eddy
simulation without discussing discretization schemes.

However, large eddy simulation and detached eddy simulation are now increasingly
seen as partners to Reynolds averaged modeling. This revised second edition contains a
new Part IV on direct numerical simulation, large eddy simulation, and detached eddy
simulation. In keeping with our original perspective, it is not encyclopedic. We address
some of the key issues, with sufficient technical content for the reader to acquire concrete
understanding. For example, dissipative and dispersive errors are defined in order to
understand why central schemes are preferred. The notion of energy-conserving schemes
is reviewed. Our discussion of filtering is brief compared to the development of large
eddy simulation in other books. Given our concise treatment, we chose instead to focus
on the nature of subgrid models. Although the material on simulation was appended at
the end of the text as Part IV, it fits just as well before Part II.

Transition modeling is currently seen as a critical complement to turbulence modeling.
The original text described the manner in which turbulence models switch from laminar
to turbulent solutions, but that is not transition modeling. The research community has
moved in the direction of adding either an intermittency equation or an equation for
fluctuations in laminar regions. This revised edition discusses these approaches.

Other, smaller, revisions have been made elsewhere in the text.

Ames, Iowa, 2010

Preface to first edition

This book evolved out of lecture notes for a course taught in the Mechanical Engineering
department at Stanford University. The students were at M.S. and Ph.D. level. The course
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served as an introduction to turbulence and to turbulence modeling. Its scope was single-
point statistical theory, phenomenology, and Reynolds averaged closure. In preparing the
present book the purview was extended to include two-point, homogeneous turbulence
theory. This has been done to provide sufficient breadth for a complete introductory
course on turbulence.

Further topics in modeling also have been added to the scope of the original notes;
these include both practical aspects, and more advanced mathematical analyses of models.
The advanced material was placed into a separate chapter so that it can be circumvented
if desired. Similarly, two-point, homogeneous turbulence theory is contained in Part III
and could be avoided in an M.S. level engineering course, for instance.

No attempt has been made at an encyclopedic survey of turbulence closure models.
The particular models discussed are those that today seem to have proved effective in
computational fluid dynamics applications. Certainly, there are others that could be cited,
and many more in the making. By reviewing the motives and methods of those selected,
we hope to have laid a groundwork for the reader to understand these others. A number
of examples of Reynolds averaged computation are included.

It is inevitable in a book of the present nature that authors will put their own slant
on the contents. The large number of papers on closure schemes and their applications
demands that we exercise judgement. To boil them down to a text requires that boundaries
on the scope be set and adhered to. Our ambition has been to expound the subject, not
to survey the literature. Many researchers will be disappointed that their work has not
been included. We hope they will understand our desire to make the subject accessible
to students, and to make it attractive to new researchers.

An attempt has been made to allow a lecturer to use this book as a guideline, while
putting his or her personal slant on the material. While single-point modeling is decidedly
the main theme, it occupies less than half of the pages. Considerable scope exists to choose
where emphasis is placed.

Motivation

It is unquestionably the case that closure models for turbulence transport are finding
an increasing number of applications, in increasingly complex flows. Computerized fluid
dynamical analysis is becoming an integral part of the design process in a growing number
of industries: increasing computer speeds are fueling that growth. For instance, computer
analysis has reduced the development costs in the aerospace industry by decreasing the
number of wind tunnel tests needed in the conceptual and design phases.

As the utility of turbulence models for computational fluid dynamics (CFD) has
increased, more sophisticated models have been needed to simulate the range of phenom-
ena that arise. Increasingly complex closure schemes raise a need for computationalists to
understand the origins of the models. Their mathematical properties and predictive accu-
racy must be assessed to determine whether a particular model is suited to computing
given flow phenomena. Experimenters are being called on increasingly to provide data
for testing turbulence models and CFD codes. A text that provides a solid background
for those working in the field seems timely.

The problems that arise in turbulence closure modeling are as fundamental as those in
any area of fluid dynamics. A grounding is needed in physical concepts and mathematical
techniques. A student, first confronted with the literature on turbulence modeling, is bound
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to be baffled by equations seemingly pulled from thin air; to wonder whether constants are
derived from principles, or obtained from data; to question what is fundamental and what
is peculiar to a given model. We learned this subject by ferreting around the literature,
pondering just such questions. Some of that experience motivated this book.

Epitome

The prerequisite for this text is a basic knowledge of fluid mechanics, including viscous
flow. The book is divided into three major parts.

Part I provides background on turbulence phenomenology, Reynolds averaged
equations, and mathematical methods. The focus is on material pertinent to single-point,
statistical analysis, but a chapter on eddy structures is also included.

Part II is on turbulence modeling. It starts with the basics of engineering closure
modeling, then proceeds to increasingly advanced topics. The scope ranges from inte-
grated equations to second-moment transport. The nature of this subject is such that even
the most advanced topics are not rarefied; they should pique the interest of the applied
mathematician, but should also make the R&D engineer ponder the potential impact of
this material on her or his work.

Part III introduces Fourier spectral representations for homogeneous turbulence the-
ory. It covers energy transfer in spectral space and the formalities of the energy cascade.
Finally rapid distortion theory is described in the last section. Part III is intended to round
out the scope of a basic turbulence course. It does not address the intricacies of two-point
closure, or include advanced topics.

A first course on turbulence for engineering students might cover Part I, excluding
the section on tensor representations, most of Part II, excluding Chapter 8, and a brief
mention of selected material from Part III. A first course for more mathematical students
might place greater emphasis on the latter part of Chapter 2 in Part I, cover a limited
portion of Part II — emphasizing Chapter 7 and some of Chapter 8 — and include most
of Part III. Advanced material is intended for prospective researchers.
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Introduction

Where under this beautiful chaos can there lie a simple numerical structure?
— Jacob Bronowski

Turbulence is a ubiquitous phenomenon in the dynamics of fluid flow. For decades,
comprehending and modeling turbulent fluid motion has stimulated the creativity of
scientists, engineers, and applied mathematicians. Often the aim is to develop meth-
ods to predict the flow fields of practical devices. To that end, analytical models are
devised that can be solved in computational fluid dynamics codes. At the heart of this
endeavor is a broad body of research, spanning a range from experimental measurement
to mathematical analysis. The intent of this text is to introduce some of the basic concepts
and theories that have proved productive in research on turbulent flow.

Advances in computer speed are leading to an increase in the number of applications
of turbulent flow prediction. Computerized fluid flow analysis is becoming an integral part
of the design process in many industries. As the use of turbulence models in computa-
tional fluid dynamics increases, more sophisticated models will be needed to simulate the
range of phenomena that arise. The increasing complexity of the applications will require
creative research in engineering turbulence modeling. We have endeavored in writing
this book both to provide an introduction to the subject of turbulence closure modeling,
and to bring the reader up to the state of the art in this field. The scope of this book is
certainly not restricted to closure modeling, but the bias is decidedly in that direction.

To flesh out the subject, the spectral theory of homogeneous turbulence is reviewed
in Part III and eddy simulation is the topic of Part IV. In this way an endeavor has
been made to provide a complete course on turbulent flow. We start with a perspective
on the problem of turbulence that is pertinent to this text. Readers not very familiar

Statistical Theory and Modeling for Turbulent Flows, Second Edition P. A. Durbin and B. A. Pettersson Reif
© 2011 John Wiley & Sons, Ltd



4 INTRODUCTION

with the subject might find some of the terminology unfamiliar; it will be explicated in
due course.

1.1 The turbulence problem

The turbulence problem is an age-old topic of discussion among fluid dynamicists. It
is not a problem of physical law; it is a problem of description. Turbulence is a state
of fluid motion, governed by known dynamical laws — the Navier—Stokes equations in
cases of interest here. In principle, turbulence is simply a solution to those equations.
The turbulent state of motion is defined by the complexity of such hypothetical solutions.
The challenge of description lies in the complexity: How can this intriguing behavior of
fluid motion be represented in a manner suited to the needs of science and engineering?

Turbulent motion is fascinating to watch: it is made visible by smoke billows in
the atmosphere, by surface deformations in the wakes of boats, and by many laboratory
techniques involving smoke, bubbles, dyes, etc. Computer simulation and digital image
processing show intricate details of the flow. But engineers need numbers as well as
pictures, and scientists need equations as well as impressions. How can the complexity
be fathomed? That is the turbulence problem.

Two characteristic features of turbulent motion are its ability to stir a fluid and its
ability to dissipate kinetic energy. The former mixes heat or material introduced into the
flow. Without turbulence, these substances would be carried along streamlines of the flow
and slowly diffuse by molecular transport; with turbulence they rapidly disperse across
the flow. Energy dissipation by turbulent eddies increases resistance to flow through pipes
and it increases the drag on objects in the flow. Turbulent motion is highly dissipative
because it contains small eddies that have large velocity gradients, upon which viscosity
acts. In fact, another characteristic of turbulence is its continuous range of scales. The
largest size eddies carry the greatest kinetic energy. They spawn smaller eddies via
nonlinear processes. The smaller eddies spawn smaller eddies, and so on in a cascade
of energy to smaller and smaller scales. The smallest eddies are dissipated by viscosity.
The grinding down to smaller and smaller scales is referred to as the energy cascade. It
is a central concept in our understanding of stirring and dissipation in turbulent flow.

The energy that cascades is first produced from orderly, mean motion. Small pertur-
bations extract energy from the mean flow and produce irregular, turbulent fluctuations.
These are able to maintain themselves, and to propagate by further extraction of energy.
This is referred to as production and transport of turbulence. A detailed understand-
ing of such phenomena does not exist. Certainly these phenomena are highly complex
and serve to emphasize that the true problem of turbulence is one of analyzing an
intricate phenomenon.

The term “eddy” may have invoked an image of swirling motion round a vortex. In
some cases that may be a suitable mental picture. However, the term is usually meant to
be more ambiguous. Velocity contours in a plane mixing layer display both large- and
small-scale irregularities. Figure 1.1 illustrates an organization into large-scale features
with smaller-scale random motion superimposed. The picture consists of contours of a
passive scalar introduced into a mixing layer. Very often the image behind the term
“eddy” is this sort of perspective on scales of motion. Instead of vortical whorls, eddies
are an impression of features seen in a contour plot. Large eddies are the large lumps
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Figure 1.1 Turbulent eddies in a plane mixing layer subjected to periodic forcing. From
Rogers and Moser (1994), reproduced with permission.

seen in the figure, and small eddies are the grainy background. Further examples of large
eddies are discussed in Chapter 5 of this book on coherent and vortical structures.

A simple method to produce turbulence is by placing a grid normal to the flow
in a wind tunnel. Figure 1.2 contains a smoke visualization of the turbulence down-
stream of the bars of a grid. The upper portion of the figure contains velocity contours
from a numerical simulation of grid turbulence. In both cases the impression is made
that, on average, the scale of the irregular velocity fluctuations increases with distance
downstream. In this sense the average size of eddies grows larger with distance from
the grid.

Analyses of turbulent flow inevitably invoke a statistical description. Individual eddies
occur randomly in space and time and consist of irregular regions of velocity or vor-
ticity. At the statistical level, turbulent phenomena become reproducible and subject to
systematic study. Statistics, like the averaged velocity, or its variance, are orderly and
develop regularly in space and time. They provide a basis for theoretical descriptions and
for a diversity of prediction methods. However, exact equations for the statistics do not
exist. The objective of research in this field has been to develop mathematical models
and physical concepts to stand in place of exact laws of motion. Statistical theory is a
way to fathom the complexity. Mathematical modeling is a way to predict flows. Hence
the title of this book: “Statistical theory and modeling for turbulent flows.”

The alternative to modeling would be to solve the three-dimensional, time-dependent
Navier—Stokes equations to obtain the chaotic flow field, and then to average the solutions
in order to obtain statistics. Such an approach is referred to as direct numerical simula-
tion (DNS). Direct numerical simulation is not practicable in most flows of engineering
interest. Engineering models are meant to bypass the chaotic details and to predict statis-
tics of turbulent flows directly. A great demand is placed on these engineering closure
models: they must predict the averaged properties of the flow without requiring access to
the random field; they must do so in complex geometries for which detailed experimental
data do not exist; they must be tractable numerically; and they must not require excessive
computing time. These challenges make statistical turbulence modeling an exciting field.

The goal of turbulence theories and models is to describe turbulent motion by analyt-
ical methods. The particular methods that have been adopted depend on the objectives:
whether it is to understand how chaotic motion follows from the governing equations, to



