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' ‘PREFACE

/

This book has developed from courses given by the authors and
probably contains more material than will ordinarily. be covered in a
one-year course. The selection of material is partly conditioned by the
interests of the authors. . - . S B St ‘
. It is hoped that the book will be a useful text in the application of
differential equations as well as for the pure mathematician. Pre-
requisite for this book is a knowledge of matrices and of the essentials of
functions of a complex variable. The notion of the Lebesgue integral is °
used in Chaps. 2, 7, 9, and 10.- However, Chap. 2 is needed only for
certain parts of Chap. 15, which, so far as applications go, are ade-
quately covered by Chap. 13. The Lebesgue integral can easily be
avoided in Chap. 7, as is indicated there. - However, a rigorous study of
Chaps. 9 and 10 requires a.mathematical sophistication that would”
certainly include the ability to understand the statements of the theorems
required from integration theory. An altermative approach is to apply .
the theory of Chaps. 9 and 10 to a restricted class of functions as is done
- in the proof of Theorem 3.1 of Chap. 9. This approach requires a
_knowledge of the Riemann-Stieltjes integral only. . . .
Chapters 3 through 12 are on linear equations. For linear theory,
it is not necessary to cover the existence theory of Chap. 1. For Chap. 3,
the necessary theorem is sketched in.Prob. 1 at the end of that chapter. .
The discussion in Sec. 7 of Chap. 3 suffices for Chaps. 4 and 5. For
Chaps. 7 through 12, Prob. 7 of Chap. 1 provides the additional existence *
theory needed. e Wi O TR Y ; :
‘ Chapters 4, 5, and 6 are not needed for any later chapters.. Chapter 8.
" is not required for any later chapter, nor are Chaps. 9 and 10. Chapter 8.
does not depend on Chap. 7. o SR Ll
Chapter 12 requires only Chap. 7 and, for Sec. 5, also Chap. 11.
Chapters 1 and 3 only are required for Chaps. 13 and 14. Chapter 1 -
will suffice for most. of Chap. 15 and for Chaps. 16 and 17. g
No attempt has been made to give the historical origin of the theory,
and only a limited number of references are given at the end of the book.
In keeping with this approach, the authors make no mention in the text
where they present new results. S ;
e ? : it

.

\



» -

- Va i

_ & ‘\"."" ; ‘ = ,,PRE!‘A.CE

-

' The prob‘lems, in some cases, glve additionat matenal N

B in the text.

-~ The preparation of thls book was greatly facllltated by a grant fmmﬂm
. Office of Naval Research. .
. The authors are indebted to a m}mber of collenues and atudenfa who
read portions of the manuseript, in ‘particular, F. G ‘Brauer, Prof A.
Horn, and Dr 2 .I Levin.
7 BaRrL A. Connmero§
NORMAN LIWINBON st
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 CHAPTER 1

EXISTENCE 'AND UNIQUENESS OF SOLUTIONS

1. Existence of Solutions s .

Let I denote an open mterval on the real line — ®» <t < =, thatis, the
set of all real ¢ satisfying @ < ¢ < b for some real constants a and b. The
set, of all complex-valued functions having k continuous derivatives on I -
is denoted by C*(I). 1If f is a member of this set, one writes f e C*(I), or\
feC*on I.. The symbol ¢is to be read “is a member of ” or “belongs to.”
It is convenient to extend the definition of C* to intervals I which may.
not be open. The real intervals a <t <b,a =t =b a=t <P, and
a <t < b will be denoted by (a,b), [a,b], [a,b), and (a,b], respectlvely
If fe C* on (a,b), and in addition the right-hand kth derivative of f exists
at a and is continuous from the right at a, then f is said to be of class C*
on fa,b). Similarly, if the kth derivative is continuous from the left at b,
then f ¢ C* on (a,b]. I both these conditions hold, one saysf e C* on [a,b].

If D is a domasn, that is, an open connected set, in the real (¢, z) plane,
the set of all complex-valued functions f defined on D such that all
kih-order partial derivatives 8%//diPaz? (p + g = k) exist and are con-
tinuous on D4s denoted by C*(D), and one writesf C’"(D), orfeC®on D.

The sets C°(I) and C°(D), the continuous functions on I and D, w111 be
denoted by €(I) and C(D), respectively. ~ -

' Let D be a domain in the (¢,z) plane and suppose fisa real-valued func- .
tion such that fe C(D). Then the central problem’ of this chapter may
be phrased as follows: i
* Problem. To find a differentiable function ¢ deﬁncd on a real & interval
I such that .

@ - - (e eD (e l)
@ N ¢ = S0 ) (m ;)

This problem is ca.lled an ordmary differeniial cquatm of the ﬁrst order,
and is denoted by ,

®., e z'=f(t,z)‘(’¥é'lz)
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If such an interval 7 and function ¢ exist, then ¢ is called a solution of the
differential equation (E) on I. Clearly if ¢ is a solution of (E) on I then
: & C! on I, on account of (i).
“In geometnca.l lnguage, (E) prescribes a slope fit,z) at each pomt of D
A solution ¢ on I is & function whose graph Ithe set of all points (t,¢(?)),
i & I] has the slope f(t,¢(f)) for each te I. - LR
"The problem (E) may have many solu'aons on an interval I. For :
example, the simple equation - = - : ’
Cxt= 1
has, for a’ny giveh real constant ¢, the solution ¢. given by -
¥ ?v(t) =t+c

on any i interval I.. However, there. emsts only one solution passing
through the point (1,1), say, and existing on-an interval I containing
 t = 1, namely, ¢o. Therefore, in order to be able to talk about unique-
ness of solutions of (E), one is led to the problem of ﬁndmg a solutxon
passing through a glven point in the (¢,z) plane. _
~ Suppose (r,£) is a given point in D. Then an. initial-value problem
associated with (E) and this peint is defined in the following way::
Initial-value Problem. To find an interval I containing v and a solution
w.of (E) on I salisfying : ‘
' ‘ plr) =
_ This problem is denoted by

r' = i (t) z(")

Suppose ¢ is such a solution which exists on an mterva.l I. Then by
% mt,egratmg (n) one obtams unmedmtely the integral equation.

e =t f fop@)ds  (tel)

Conversely, suppose ¢¢C is a function satisfying the above integral

equation on I. ‘Then clearly ¢(r) = £, and by differenfiating the equa-
- tion it follows that ¢ is a solution of (E) on I. In other words, thereis a.
correspondence between solutions ¢ of (E) on I satisfying ¢(7) = £, and
continuous functions ¢ satisfying the above integral relation on I. Thus
the initial-value problem for (E) and (7,£) on I is completely equivalent to
the finding of all continuous ¢ on I satisfying the integral equation. - -

Given a continuous function f on a domain D as above, the first ques-
tion' to be answered is whether there exists a solution of the equation (E).
The answer is yes, if I is properly prescribed. An indication of the limita-
tion of any general existence theorem can be seen by considering the sim-
ple example
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z =z

Tt is clear that a solution of this equation which passes through the point
(1,—1) is given by ¢(f) = —t'. However, this solution does nbt exist
at t = 0, although'f({,z) = #? is continuous there. This shows that any
~ general existence theorem will necessarily have to be of a local nature, and
existence in the large can only be asserted under additional,conditions
on f. s .
The local existence proof proceeds by two stages First, it is shown
by an actual construction that there exists an “approx1mate solution
to (E), in a sense to be made precise below. Then one proves that there
exists a sequence of these approxxmate solutmns which tend to p. solution
of (E). 3 ~ '
_ Let f be a real-valued continuous function on a domain D in the (, z)

plane,  An e-approzimate solution . of (E) on a t interval I is a function
peCon'l such that - :

@ (e@)eD (@eD ’ |
(i1) <p ¢ C! on I, except possibly for a finite set of pomts Sonl, Where
"¢’ may have mmple dlscontmultlest

(i) le'() —fGe®)| S e« (el — S)

Any function ¢ e C sa.t:sfymg property (11) on I is said t6 have a mwemse
continuoug derivative on I, and this is denoted by ¢ e C3(I).
If f< C on the rectangle

R: It‘-—-r|<a,* |z — ¢ £ b (a,d > 0)
about the-point (T,E), it is- bounded there. Let
' M = max |f(4,2)] ((t x) e R)

and . o
a = min (a E)
M
: Theorem 1 1. LetfeC onthe rectangle R G’wen any e >0, there e:msts
an eapprozimate solution ¢ of (E) on |t — 7| = a'such thai <p(1')

Proof. Let ¢ > 0 be glven An e—apprommate solution will be con-
structed for the interval {r, 7 + a]; a similar construction will define it for
[t — a, v]. This approximate solution will consist of a polygonal path

starting at (r,£), that is, a ﬁmte_number of stralght-hne segments gomed |
-end to end.

e

tA functxon g.is said to ha.ve a simple discontinuity st a point ¢ if the nght and left
limits of g at ¢ exist but are not equal. In casee = 0, 1t will be understood that the
set S is empty.
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~ Since f ¢ C on R, it is uniformly continuous there, and hence, for the
_gwen 6 there exists a &, > O such that ~

it S (. f(iz)lge (1.1)

) eR AN sRand|i =T S8, |z -2 S5,
;Now dxvxde the mterval [r, 7 i o] into.n parts )
"'=t0<tl< s <t.——r+a

if

in such a way thét ' | _
max |& — f| £ min (a’., sﬂ) | '(1.2)

From (r ), construct a straxght—lme segment with slope f (1,8 proceedmg
to the right of r until it intersects the line ¢ = ¢ at some point’ (£1,21).

o
’ T :
) & |rra | T

'le

This segment must he inside the triangular reglon T bounded by the lines
issuing from (7,#) with slope M and — M, and the line ¢t = r 4+ « (see Fig.
1, where « is shown as b/M}. This fellows immediately from the defini-
tion of a and the fact that |f(t,z)] < M. In particular, the constructed -
segment actually meets theline = ,in T. At the point (¢;,2,) construct
to the right of 7, a straight-line'segment with slope f(¢;,2,) up to the inter-
section with ¢ = {,, say at (#5,23). Continuing in this fashion, in a finite
number of steps the resultant path ¢ will meet the linet = r + . Fur-
ther, the path will lie completely within 7. »
This ¢ is the required e-approximate solution. Analytically it may be
expressed as <, : '
' o(7) =

o) = o) + flirole = ) (L3)
tx-1<lt§t;‘ k=1 ... ,n



SEc. 1] EXISTENCE AND UNIQUENESS OF SOLUTIONS 5
From the construction of ¢ it is elear that ¢ ¢ C} on [r, 7 + a], and that
o —o@ = Mlt =1 (Finr 7+ o) (1.4)

If ¢ is such that t,y < ¢ < i, then (1.4) t.ogéthér- with (1.2) imply that
le(®) = e(ti1)| < 8. But from (1.3) and (1.1), #

l‘Pl(t) == f(tr‘P(t))l = I.f(tk—h?(tb-l)) = f(t9¢(t))| é €

This shows that ¢ is an e-approximate solution, as desired. :

The construction of Theorem 1.1 is sometimes used as & practical means
for finding an approximate solution. In fact, what has been found is
really a set of points (f,(t)) and these are joined by line segments. The
points, by (1.3); satisfy the difference equation s >

Tp — Tp—1 = (e — te—2)f (tr—2,%k-)

This is a formulation that might be used on a digitsl,’computing machine,
for example. : '
The existence of a solution of (E) will now be deduced. For the reader
mainly interested in the applications, other existence proofs, under more
restricted -assumptions on f, are given in Theorems 2.3 and 3.1; the rest.
_ of this section can be omitted. & 2
In order to prove the existence of a sequence of approximate solutions
tending to a solution of (E), where. the only hypothesis isfe C on R, the
notion of an equicontinuous set of functions is required. A set of func-
tions F = {f} defined on a real interyal I is said to be equicontinuous on
I if, given any ¢ > 0, there exists a . > 0, independent of f¢ F and also
* &, Te I such that - e ot

@® —f(l’)l < e  whenever | =5 I <8

The fundamental property of such sets of functions needed here is given
in the following lemma: - ot e B g e

Lemma (Ascoli). - On @ bounded interval I, let F = {f) be an infinite, -
uniformly bounded, equicontinuous set of functions. . Then F contains ‘@

sequence {f}, n = 1,2, . . . , which is untfermly convergent onl.
Proof. Let {r},k =1,2, ..., 6 bethe rational numbers in I enumer-

ated in some order. The set of numbers {f(r)}, feF, is bounded, and
hence there exists a sequence of distinet functions {fa}, fai'e F, such that
the sequence {fai(r1)} is convergent. Similarly, the set of numbers
{fai(rs)] has a convergent subsequence {fas(rs)!}. "Continuing in this
way, an infinite set of functions fueF, n, k=1,2, ..., is obtained
which have the property that {fu} converges at'ry, . . ' ; Ta. Define f»
to be the function f... ‘Then {f.} is the required sequence which is
uniformly convergent on I. - = , ‘

Clearly {fa} converges at each of the Tationals on 1.~ Thus, given any

/
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€ >0 a,nd rational nuniber rasl : thene exists an integer Ne(r). silch that
) — Sl <6 (m > N(W)

For the glven € there exwts a &, lndependent of ¢, Zand feF such that -

FO)] —f(m <e -1 < 8.

Divide the interval I mto a finite number of subintervals 7 1 W= e
such that the length of the largest subinterval is less than 3.. For each
' I choose a rational number #, eI,, If ‘te 1, then ¢ is in some I, and

‘ hence
L 4

S8 = f-(t)l |f(®) —fn(n)l 2 lfn(fk) — I e
: + |fn(F) — fm(t)l <3¢

provided that n,m > max (Ne(F1), .. ., N(#)). This proves the
uniform convergence of the sequence {fa} on I. '

Theorem 1.2 (Cauchy-Peano ‘Existence Theorem). If fe . C on the

. rectangle R, then there cxzsts a solutien ¢ ¢ C* of (E) on |t — 1| = a for
. which o(z) = &.

Proof. Let {ea}ym =1, 2, , be a monotone‘decrea.smg sequence
‘of positive real numbers tendmg to zero asn — «, By Theorem 1.1, for
each e, there exists an e,-approximate solution, ¢, of (E)on | — 7| £ «
such that ¢.(r) = & Choose one such solution ¢, for each e,. From
- (1.4) it follows that. '

L e —e® sME—T s

Applying (1.5) to 7 = , one readily sees, since [t = 7| < b/M, that the
sequence {¢,} is uniformly bounded by |¢| 4+ b. Moreover, (1.5) implies
that {¢.} is an equicontinuou's set. By the Ascoli lemma, there exists a
subsequence {en}, k=1, 2, ..., of { en}s converging uniformly on
[-r —a, 7 + a] to a limit func’mon ¢, which must be continuous since each
. ~¢a is continuous. [Indéed, it follows from (1.5) that {eo(f) — ¢(f)} =
Mt -7

> This limit function ¢ is a solution of ((E) which meets the required
~specifications. To see this, one writes the relation defining ¢, as an
en-approximate solution in an integral form, as follows:

on®) = £+ [ (s,0n6)) + An(@)) ds (1.6)
where A.(f) = on(t) — f(t,0n(t)) at those points where (p,; exists; .and

A.(t) = 0 otherwise. Because ¢, is an e,-approximate solution, |A,(f)| <
én. Since f is uniformly continuous on R, and ¢., — ¢ uniformly on
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[r — a,7 + o], a8 k— o, it follows tha.t f(t,go..(t)) — f(t,0(1)) umformly
onfr —ao,74 al,as k- . Replacing n by n; in (1 6) one obthfns, in
letting k — o,

o) = £+ [ 1(s,06)) ds L

But from (1.7), ¢(r) = £, and, upon differentiation, ¢’(t) = f{t ¢(1)), for
F(t,e()) is a continuous function. It is clear from this that g is a solutlon 7
of (E) on |t — 7| = « of class C*.

In general, the choice of a subsequence of {ga,,} in the above proof i is
necessary, for there exist polygonal paths {¢.} which diverge everywhere
on a whole interyal about ¢ = r as ¢, —0; see Prob. 12.

If it is assumed that a solution of (E) through (&) (if it exxsts) is -
unique, then every sequence of polygonal paths {¢.} for which e, =+ 0.
~ must converge on |¢ — 7| < @, and hénce uniformly, to a solution, for {¢.}

is an equicontinuous set on |t — 7| < a. Suppose this were false. Then

there would exist a sequence of polygonal paths {e.} divergent at some
- point on |t — 7| £ a. This implies the existence of at least two ‘sub-
-sequences of {@n} tendmg to different limit functions, Both will be solu-+ -
tions, and this gives a contradiction. ' Therefore, if uniqueness is assured,
the choice of a subsequence in Theorem 1.2 is unnecessary.

Tt can ‘happen that the choice of a subsequence is unnecessary even
though uniqueness is not satisfied. The example

& =g (1,.8)
 illustrates this. There are an infinite number of solutions starting at
(0,0) which exist, on [0,1]. Forany¢, 0 < ¢ < 1, the functxon ¢. defined
by
: %(0"0 (0=t=so -"'

— N\ : T i .a
(d) =(2—(‘—§——”)) e<tsl) - (19 -

is a solution of (1.8) on [0,1]. If the construction of Theorem 1.1 is
. applied to Eq. (1.8), one finds that the only polygonal path starting at the
point (0,0) is ¢,: This shows that thls method cannot, in general, give
all solutions of (E).

Theorem 13. LetfeCona dommn D n the (¢, z) plane, and suppoee
(7,2) 18 any point wn D. Then there exisis a solufaan ¢ of (E) on. some t
interval contatning v in its inierior.

Proof. "Since Di is open, there exists an r > 0 such that a.ll pomts
~ whose distance from (r,£) is less than r, are contained in D. TLet R'be any

closed rectangle containing (r,£), and contained in ‘this- gpen cirele of
_ radms r. Then Theorem 1 2 a.pphed to (E) on R gives the required result.
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