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Preface to the Second Edition

It was more than a surprise to us that the first edition of this book already went
out of print about a year after its first appearance. We were flattered by the many
positive and even enthusiastic comments and letters from colleagues and the gen-
eral readership. Several of our colleagues helped us in finding typographical and
other errors. In particular, we thank Ulrich Brenner, Andras Frank, Bernd Gértner
and Rolf Mohring. Of course, all errors detected so far have been corrected in this
second edition, and references have been updated.

Moreover, the first preface had a flaw. We listed all individuals who helped
us in preparing this book. But we forgot to mention the institutional support, for
which we make amends here.

It is evident that a book project which took seven years benefited from many
different grants. We would like to mention explicitly the bilateral Hungarian-
German Research Project, sponsored by the Hungarian Academy of Sciences and
the Deutsche Forschungsgemeinschaft, two Sonderforschungsbereiche (special re-
search units) of the Deutsche Forschungsgemeinschaft, the Ministére Frangais de
la Récherche et de la Technologie and the Alexander von Humboldt Foundation
for support via the Prix Alexandre de Humboldt, and the Commission of the Eu-
ropean Communities for participation in two projects DONET. Our most sincere
thanks go to the Union of the German Academies of Sciences and Humanities
and to the Northrhine-Westphalian Academy of Sciences. Their long-term project
“Discrete Mathematics and Its Applications” supported by the German Ministry
of Education and Research (BMBF) and the State of Northrhine-Westphalia was
of decisive importance for this book.

Bonn, October 2001 Bernhard Korte and Jens Vygen



Preface to the First Edition

Combinatorial optimization is one of the youngest and most active areas of discrete
mathematics, and is probably its driving force today. It became a subject in its
own right about 50 years ago.

This book describes the most important ideas, theoretical results, and algo-
rithms in combinatorial optimization. We have conceived it as an advanced gradu-
ate text which can also be used as an up-to-date reference work for current research.
The book includes the essential fundamentals of graph theory, linear and integer
programming, and complexity theory. It covers classical topics in combinatorial
optimization as well as very recent ones. The emphasis is on theoretical results
and algorithms with provably good performance. Applications and heuristics are
mentioned only occasionally.

Combinatorial optimization has its roots in combinatorics, operations research,
and theoretical computer science. A main motivation is that thousands of real-life
problems can be formulated as abstract combinatorial optimization problems. We
focus on the detailed study of classical problems which occur in many different
contexts, together with the underlying theory.

Most combinatorial optimization problems can be formulated naturally in terms
of graphs and as (integer) linear programs. Therefore this book starts, after an
introduction, by reviewing basic graph theory and proving those results in linear
and integer programming which are most relevant for combinatorial optimization.

Next, the classical topics in combinatorial optimization are studied: minimum
spanning trees, shortest paths, network flows, matchings and matroids. Most of
the problems discussed in Chapters 6—14 have polynomial-time (“efficient”) algo-
rithms, while most of the problems studied in Chapters 15-21 are NP-hard, i.e.
a polynomial-time algorithm is unlikely to exist. In many cases one can at least
find approximation algorithms that have a certain performance guarantee. We also
mention some other strategies for coping with such “hard” problems.

This book goes beyond the scope of a normal textbook on combinatorial opti-
mization in various aspects. For example we cover the equivalence of optimization
and separation (for full-dimensional polytopes), O (n3)-implementations of match-
ing algorithms based on ear-decompositions, Turing machines, the Perfect Graph
Theorem, MAXSNP-hardness, the Karmarkar-Karp algorithm for bin packing, re-
cent approximation algorithms for multicommodity flows, survivable network de-
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sign and the Euclidean traveling salesman problem. All results are accompanied
by detailed proofs.

Of course, no book on combinatorial optimization can be absolutely compre-
hensive. Examples of topics which we mention only briefly or do not cover at
all are tree-decompositions, separators, submodular flows, path-matchings, delta-
matroids, the matroid parity problem, location and scheduling problems, non-
linear problems, semidefinite programming, average-case analysis of algorithms,
advanced data structures, parallel and randomized algorithms, and the theory of
probabilistically checkable proofs (we cite the PCP Theorem without proof).

At the end of each chapter there are a number of exercises containing additional
results and applications of the material in that chapter. Some exercises which
might be more difficult are marked with an asterisk. Each chapter ends with a list
of references, including texts recommended for further reading.

This book arose from several courses on combinatorial optimization and from
special classes on topics like polyhedral combinatorics or approximation algo-
rithms. Thus, material for basic and advanced courses can be selected from this
book.

We have benefited from discussions and suggestions of many colleagues and
friends and — of course — from other texts on this subject. Especially we owe sincere
thanks to Andras Frank, Laszl6 Lovasz, Andras Recski, Alexander Schrijver and
Zoltan Szigeti. Our colleagues and students in Bonn, Christoph Albrecht, Ursula
Biinnagel, Thomas Emden-Weinert, Mathias Hauptmann, Sven Peyer, Rabe von
Randow, André Rohe, Martin Thimm and Jirgen Werber, have carefully read
several versions of the manuscript and helped to improve it. Last, but not least we
thank Springer Verlag for the most efficient cooperation.

Bonn, January 2000 Bernhard Korte and Jens Vygen
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1. Introduction

Let us start with two examples.

A company has a machine which drills holes into printed circuit boards. Since
it produces many of these boards it wants the machine to complete one board as
fast as possible. We cannot optimize the drilling time but we can try to minimize
the time the machine needs to move from one point to another. Usually drilling
machines can move in two directions: the table moves horizontally while the
drilling arm moves vertically. Since both movements can be done simultaneously,
the time needed to adjust the machine from one position to another is proportional
to the maximum of the horizontal and the vertical distance. This is often called
the L.o-distance. (Older machines can only move either horizontally or vertically
at a time; in this case the adjusting time is proportional to the L;-distance, the
sum of the horizontal and the vertical distance.)

An optimum drilling path is given by an ordering of the hole positions
D1, ..., Pn Such that Z;:]l d(pi, pi+1) 1s minimum, where d is the L-distance:
for two points p = (x,y) and p’ = (x’,y’) in the plane we write d(p, p’) =
max{|x —x’|, |y — ¥’|}. An order of the holes can be represented by a permutation,
ie. a bijection 7 : {1,...,n} = {1,...,n}.

Which permutation is best of course depends on the hole positions; for each list
of hole positions we have a different problem instance. We say that one instance
of our problem is a list of points in the plane, i.e. the coordinates of the holes to
be drilled. Then the problem can be stated formally as follows:

DRILLING PROBLEM
Instance: A set of points pi, ..., p, € R2.

Task: Find a permutation = : {l,...,n} — {l,...,n} such that
S d(priy» Priis1y) is minimum,

We now explain our second example. We have a set of jobs to be done,
each having a specified processing time. Each job can be done by a subset of
the employees, and we assume that all employees who can do a job are equally
efficient. Several employees can contribute to the same job at the same time,
and one employee can contribute to several jobs (but not at the same time). The
objective is to get all jobs done as early as possible.
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In this model it suffices to prescribe for each employee how long he or she
should work on which job. The order in which the employees carry out their jobs
is not important, since the time when all jobs are done obviously depends only on
the maximum total working time we have assigned to one employee. Hence we
have to solve the following problem:

JoB ASSIGNMENT PROBLEM

Instance: A set of numbers 1,...,7, € R, (the processing times for n
jobs), a number m € N of employees, and a nonempty subset
S; € {1, ..., m} of employees for each jobi € {1,...,n}.

Task: Find numbers x;; € Ry for all i = 1,...,n and j € S; such
that ZjeS,- xij =t fori =1,...,n and maxje, m Y. jes; Xij 18
minimum.

These are two typical problems arising in combinatorial optimization. How to
model a practical problem as an abstract combinatorial optimization problem is
not described in this book; indeed there is no general recipe for this task. Besides
giving a precise formulation of the input and the desired output it is often important
to ignore irrelevant components (e.g. the drilling time which cannot be optimized
or the order in which the employees carry out their jobs).

Of course we are not interested in a solution to a particular drilling problem
or job assignment problem in some company, but rather we are looking for a
way how to solve all problems of these types. We first consider the DRILLING
PROBLEM.

1.1 Enumeration

How can a solution to the DRILLING PROBLEM look like? There are infinitely
many instances (finite sets of points in the plane), so we cannot list an optimum
permutation for each instance. Instead, what we look for is an algorithm which,
given an instance, computes an optimum solution. Such an algorithm exists: Given
a set of n points, just try all possible n! orders and for each compute the L .,-length
of the corresponding path.

There are different ways of formulating an algorithm, differing mostly in the
level of detail and the formal language they use. We certainly would not accept
the following as an algorithm: “Given a set of n points, find an optimum path and
output it.” It is not specified at all how to find the optimum solution. The above
suggestion to enumerate all possible n! orders is more useful, but still it is not
clear how to enumerate all the orders. Here is one possible way:

We enumerate all n-tuples of numbers 1, ..., n, i.e. all n"* vectors of {1505 50
n}". This can be done similarly to counting: we start with (1, ..., 1, D, (,...,
1,2) up to (1,...,1,n) then switch to (1,...,1,2,1), and so on. At each step

we increment the last entry unless it is already n, in which case we go back to the
last entry that is smaller than n, increment it and set all subsequent entries to 1.



1.1 Enumeration 3

This technique is sometimes called backtracking. The order in which the vectors
of {1, ..., n}" are enumerated is called the lexicographical order:

Definition 1.1. Let x,y € R" be two vectors. We say that a vector x is lexico-

graphically smaller than y if there exists an index j € {1, ..., n} such that x; = y;
Jori=1,...,j—1andx; <yj.
Knowing how to enumerate all vectors of {1, ..., n}" we can simply check for

each vector whether its entries are pairwise distinct and, if so, whether the path
represented by this vector is shorter than the best path encountered so far.

Since this algorithm enumerates n” vectors it will take at least n" steps (in fact,
even more). This is not best possible. There are only n! permutations of {1, ..., n},
and n! is significantly smaller than n". (By Stirling’s formula n! ~ /27 ';—) We
shall show how to enumerate all paths in approximately n?-n! steps. Consider the
following algorithm which enumerates all permutations in lexicographical order:

PATH ENUMERATION ALGORITHM
Input: A natural number n > 3. A set {pi, ..., p,} of points in the plane.

Output: A permutation * : {1,...,n} — {1,...,n} with
cost(m*) = Z:-:ll d(Pr+iys Pr*(i+1y) Minimum.

Set w(i) ;=i and w*(i) :=i fori =1,...,n. Seti :=n — 1.

)
@ Letk:=min({z@)+1,....,n+1}\{nw),..., 70 — D).
® Ifk <n then:

Set 7 (i) := k.

If i = n and cost () < cost(r*) then set 7* := .
Ifi <nthensetn(i+1):=0andi:=i+ 1.
Ifk=n+1thenseti:=i—1.
If i > 1 then go to (.

Starting with (7w (i));=1,.,» = (1,2,3,...,n—1,n)andi = n—1, the algorithm
finds at each step the next possible value of 7 (i) (not using w(1),...,w(@{ — 1)).
If there is no more possibility for 7 (i) (i.e. k = n + 1), then the algorithm
decrements i (backtracking). Otherwise it sets 7 (i) to the new value. If i = n, the
new permutation is evaluated, otherwise the algorithm will try all possible values
for (i + 1), ..., w(n) and starts by setting 7(i + 1) := 0 and incrementing i.

So all permutation vectors ((1), ..., (n)) are generated in lexicographical
order. For example, the first iterations in the case n = 6 are shown below:



4 1. Introduction

r:=(1,2,3,4,5,6), i:=5
k=6 mwm:=(,2,3,4,6,0), i:=6
k:=5 mn:=(,2,3,4,6,5), cost(mw) < cost(m™)?
k:=17, i3 =5
k:=1, i=4
k=35 wi=0(0,2,3,5,0;5; i:=
k:=4, mw:=(1,2,3,5,4,0), i:=6
k=6 m:=(,2,3,54,6), cost(mw) < cost(m*)?

Since the algorithm compares the cost of each path to 7*, the best path en-
countered so far, it indeed outputs the optimum path. But how many steps will this
algorithm perform? Of course, the answer depends on what we call a single step.
Since we do not want the number of steps to depend on the actual implementation
we ignore constant factors. In any reasonable computer, (1) will take at least 2n+ 1
steps (this many variable assignments are done) and at most cn steps for some
constant c. The following common notation is useful for ignoring constant factors:

Definition 1.2. Let f, g : D — R be two functions. We say that f is O(g) (and
sometimes write f = O(g)) if there exist constants o, B > 0 such that f(x) <
ag(x)+ B forallx e D. If f = O(g) and g = O(f) we also say that f = O(g)
(and of course g = O(f)). In this case, f and g have the same rate of growth.

Note that the use of the equation sign in the O-notation is not symmetric. To
illustrate this definition, let D = N, and let f(n) be the number of elementary
steps in (D and g(n) = n (n € N). Clearly we have f = O(g) (in fact f = O(g))
in this case; we say that (D) takes O(n) time (or linear time). A single execution
of 3 takes a constant number of steps (we speak of O(1) time or constant time)
except in the case k < n and i = n; in this case the cost of two paths have to be
compared, which takes O(n) time.

What about ? A naive implementation, checking for each j € {m(i) +
l,...,n} and each h € {1,...,i — 1} whether j = m(h), takes O((n — 7 (i))i)
steps, which can be as big as ©(n?). A better implementation of @) uses an
auxiliary array indexed by 1, ..., n:

@ For j:=1tondoaux(j):=0.
For j:=1toi —1 do aux(w(j)) :=1.
Set k := (i) + 1.
While £k < n and aux(k) =1 do k :=k + 1.

Obviously with this implementation a single execution of ) takes only O (n)
time. Simple techniques like this are usually not elaborated in this book; we assume
that the reader can find such implementations himself.

Having computed the running time for each single step we now estimate the
total amount of work. Since the number of permutations is n! we only have to
estimate the amount of work which is done between two permutations. The counter
i might move back from n to some index i’ where a new value 7 (i") < n is found.
Then it moves forward again up to i = n. While the counter i is constant each of )
and ) is performed once. So the total amount of work between two permutations



