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PREFACE

A topical conference on Tetrahedrally Bonded Amorphous Semi-
conductors was held at the Carefree Inn, Carefree, Arizona, from
the 12th to the 14th of March, 1981. The conference was sponsored
by the American Physical Society, with financial support from the
Solar Energy Research Institute, Xerox Corporation and the National
Science Foundation., The conference concentrated on the basic
physics of hydrogenated amorphous silicon, and was organized in
response to the rapidly growing interest in the technological
applications of this material.

The Organizing Committee consisted of: D. K. Biegelesen (Xerox);
M. H. Brodsky (IBM); D. Carlson (RCA); H. Fritzsche (University of
Chicago); J. Joannopoulos (MIT); J. C. Knights (Xerox); G. Lucovsky
(North Carolina State University); W. Paul (Harvard); B. Seraphin
(University of Arizona); J. Stone (SERI); R. A. Street (Xerox),
conference chairman; J. Tauc (Brown University); P. C. Taylor (NRL).
The members of the International Advisory Committee were: |. Solomon
(France); W. Spear (UK); J. Stuke (W. Germany); K. Tanaka (Japan).
The Program Committee comprised D. Carlson (RCA); H. Fritzsche
(University of Chicago); G. Lucovsky (North Carolina State Univer-
sity); R. A. Street (Xerox), chairman; P. C. Taylor (NRL).

These proceedings have been organized into chapters which
reflect the range of interest of the submitted papers:

Growth and Characterizationof Films
Atomic Structure and Bonding
Electron States

Electronic Transport

Absorption and Recombination
Surfaces and Interfaces

We are grateful to Violet Moffat, Erin Schreiner and Marilyn
Tenney for their assistance in the organization of the conference
and in the preparation of the proceedings. Our thanks also go to
the projectionist, John Gill, and to the Carefree Inn and its staff
for their contribution to the success of the conference.

R. A. Street

D. K. Biegelsen

J. C. Knights

Palo Alto, California
April, 1981
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Chapter I Growth and Characterization of Films 1

OPTICAL EMISSION STUDIES OF
REACTIVE SPECIES IN PLASMA DEPOSITION*

F, J. Kampas and R, W. Griffith
Brookhaven National Laboratory
Upton, NY 11973

ABSTRACT

Optical emission studies of the glow-discharge deposition of
a-Si:H alloys reveal the presence of reactive species derived from
process gases and impurities. Studies of the dependences of emission
intensities upon deposition parameters elucidate the mechanisms of for-
mation of these species., Effects of impurities detected by emission
spectroscopy upon a-Si:H film electronic properties are discussed. A
model of the chemical reactions involved in film growth is presented.

INTRODUCTION

Although the plasma deposition of a-Si:H is now common practice,
the chemical reactions involved in film growth are not well under-
stood. The two techniques commonly used for studying the chemistry
of a-Si:H film deposition are optical emission spectroscopy and mass
spectrometry. In this paper we shall discuss the results of studies
of the optical emission from silane and disilane glow discharges and
also speculate about the nature of the chemical reactions responsible
for a~Si:H film growth.

RESULTS AND DISCUSSION

We have studied the silane glow discharge in great detail. In
this section we summarize results which are presented more completely
elsevhere.l,2 The species observed in emission from the silane glow
discharge are Si, SiH, H, and Hy. The potentially important species
SiHp and SiH3 have no known emission spectrum, In order to determine
the origin of the emitting species we studied the power dependences
of the emission intensities of the four species along with a small
amount of added N2.3 The emission intensities of Si, SiH, H, and H2
varied as the 0.84, 0.78, 1.92, and 1.85 power of the Nj emission in-
tensity over a range of 10-100 W rf power., It was concluded that the
emitting excited states of Si and SiH are produced by one electron-
impact excitation, whereas the emitting excited states of H and Hp
require two electron-impact excitations. The following set of
energetically reasonable reactions is consistent with that conclusion:

e~ + SiH, + SiH,* + e~ 1)

*Work performed under the auspices of the U.S. Department of Energy
under Contract No. DE-AC02-76CH00016.

ISSN:0094-243X/81/730001-05$1.50 Copyright 1981 American Institute of Physics



SiH4* + Si* + 2H, (2)
SiHgz* -+ SiH* + Hp + H . 3)

The excited states Si* and SiH* emit the detected photons. However,
the excited states H* and H2* require another electron-impact excita-
tion for their production. The anomalously high rotational and
vibrational temperatures calculated from the SiH emission spectrum
are explained by this mechanism,.

A study of the photolysis of silane by 8.4 eV photons indicated
that the primary products of silane photolysis are SiH2 and SiH3°4
While these species were not detected directly, higher silanes pro-
duced by subsequent reactions were detected mass spectrometrically,
That study is not inconsistent with our own work. The reactions given
in Eqs. 2 and 3 may account for only a small part of the glow dis-
charge decomposition of silane,

The emission spectrum ofadisilane discharge also reveals the
presence of Si, SiH, H, and Hp., The Si and SiH emission intensities
are approximately one-tenth of their values for a monosilane dis-—
charge at the same pressure and rf power, The emission from H2 and H
are reduced by a similar factor compared to a monosilane discharge
despite the fact that the deposition from disilane occurred at five
times the rate as the deposition from monosilane. These facts imply
that monosilane is a product of the disilane discharge. This supports
the hypothesis of the IBM group3 that the electron-impact dissociation
of disilane proceeds in the following way:

e~ + SigHg + SiHy + SiH4 + e~ . (4)

The fact that a-Si:H can be doped by the addition of PH3 and
BpHg to the silane is central to photovoltaic applications. An under-
standing of the chemical reactions involved in doping would be useful
for optimizing doping efficiency and reducing the number of defect
states introduced in doping. We have found the species PH2, PH, and
P in the emission spectrum of a mixture of 1% PH3 in SiH4. See Figs.
1 and 2,

In studying the electronic properties of any material one must
consider the unavoidable presence of impurities, We have described?2
at some length the synergistic doping effect of N2 and O2 in the
plasma, as might be introduced by a small leak in the deposition
system. Small air leaks can be detected quite easily by the emission
from Nyp. Sensitivities for Ny of 100 ppm in the silane are easily
obtainable, When oxygen concentrations "0.1% are reached, emission
from Si0 appears in the spectrum,l

Another source of impurities is the process gas. A common im-
purity in silane is monochlorosilane (SiH3Cl)., We found that 1000 Ppm
SiH3Cl in silane can result in a displacement of the Fermi level
V0,2 eV downward in the bandgap of the deposited film. This concen—
tration of SiH3Cl is easily detectable as emission from SiCl (281 nm)
and results in 600 ppm incorporated Cl.

Outgassing of the deposition system is a third source of im-
purities. Emission from the species OH, CO, and N is seen during an
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argon discharge used to clean the substrates. These species arise
from Hp0, CO, and Np adsorbed onto the electrodes and chamber,

Metallic impurities are potentially very deleterious to the elec-
tronic properties of semiconductors. The argon cleaning discharge
mentioned earlier shows emission from Mg and Zn when the substrate
temperature is about 350 C. Emission from Zn is seen also in the
silane discharge under these conditions., However, SIMS analysis of
the deposited films show less than 0.2 ppm of Zn in the film bulk,

0.2 ppm being the sensitivity of the SIMS measurement., Thus emission
spectroscopy of the discharge is more sensitive than SIMS for de-
tecting Zn.,

We turn now to the question of the chemical species involved in
the growth of the a=-Si:H film, Knights has stated that the species
involved in film growth are probably SiH and SiH3.6 As stated
earlier, the reaction given in Eq. 4 has been advanced to explain the
higher deposition rate in a disilane glow discharge. A rapid surface
reaction was postulated to account for the fact that a-Si:H films have
a smaller H to Si ratio than SiHjy, and the following reaction was
proposed:5

SiH,(g) + SiH, (s) + SiH,(g) + Hy(g) . (5)

Lampe has proposed the following gas—-phase reaction to explain
results obtained in the photolysis of silane:4

SiH2 + SiH4 > SizH6* > SiZH6 (6)
-~ Hg + SiH3SiH (7)

The species SigHg* is a disilane molecule with an internal activation
energy of 2.1 eV. We propose that hydrogen elimination during film
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deposition occurs through an analogous reaction:

: . 4 . % g '
SiH, (g) + Sley(S) > Si '1Hy+2(s) + si 4H ro (8) (8)
r2 5

<+ si 1Hy(s) + Hz(g) 9)

The quantities ryg, ry, and rj are the rates of the deposition,
deactivation, and hydrogen elimination reactions, respectively., The
ratio of the rates, r2/r1, can be calculated from the atomic hydrogen
content of the film, cyt

ry/ry = 2cx7l - 3 (10)

This result follows from the fact that the film gains r; + rp silicon
atoms per second but gains only 2rj hydrogen atoms per second. An
Arhennius plot of r2/rl versus 1000/Tg, where Ty is the substrate
temperature, should give the difference in activation energy between
the two rates., In Fig. 3 we have made such a plot using values of
hydrogen concentration versus T_ taken from the literature.’»8 The
points fall close to straight lines for Tg less than 300 C., At 300 C,
other mechanisms of hydrogen elimination, such as those that occur in
the annealing of already deposited films, become important,

Ts (C)
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T T T1TT
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Fig. 3, Plot of log ry/ry versus
1000/Tg. o ref, 7; x ref. 8,
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Fig. 4. Proposed mechanism of film growth,
hydrogen elimination and cross-linking at
film surface,

A model with SiH, elimination was also investigated using a set of
equations analogous to Eqs. 8 and 9. In that case, straight lines were
not obtained. The fact that straight lines were obtained from Egs. 8
and 9 encouraged us sufficiently to consider the chemistry of the
cross-linking step, which must follow hydrogen elimination. We propose
that the divalent silicon atom resulting from hydrogen elimination in-
serts across a nearby Si~H bond, a well-known reaction. The entire
mechanism is shown in Fig. 4. The model we have presented is incom-
plete in that is does not explain the effect of electrode bias upon
hydrogen content. Work on that problem is in progress.
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DEPOSITION AND DOPING OF a-Si:H FROM Si,Hs PLASMAS
B. A. Scott, M. H. Brodsky, D. C. Green, R. M. Plecenik, E. E. Simonyi and R. Serino
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
ABSTRACT

Compared to SiH,, the plasma deposition of amorphous hydrogenated silicon from
Si,Hg results in compositionally similar films, deposited at rates at least an order of
magnitude higher. The films also display larger dark and photoconductivities, a result
related directly to higher E; in the intrinsic SiyHg-prepared material. The effect is
structural, not impurity-dominated. Dopant incorporation is also found to be strongly
influenced by the silicon source, as is the doping efficiency. For a given gas phase
concentration of n-type dopant (PHj), the distribution coefficient is C.y<1 for Si,Hg
plasmas, compared to C.4>1 for depositions from SiH,, yet film electrical properties are
comparable. On the p-type side, much smaller differences are observed with B,H, doping
of the two sources. Finally, a-Si:H plasma deposition chemistry is examined within the
context of a neutral radical model and hydrogen etching experiments.

INTRODUCTION

The use of higher silanes for various CVD silicon processes offers potential advan-
tages over SiH,, including higher deposition rates and/or lower temperature growth. This
is related to the lower stability of the higher hydrides, due more to kinetic! than thermo-
dynamic factors. We have been investigating the deposition of amorphous hydrogenated
silicon (a-Si:H) by plasma decomposition of higher silanes to determine whether the
resulting compositional, structural and transport properties differ from SiH,-deposited
material. In addition, studies using such source compounds can lead to insight concerning
the important chemical mechanistic questions of a-Si:H film growth?-3.

FILM PREPARATION

Disilane was synthesized by the reduction of hexachlorodisilane with LiAlH,, using a
modification of the method reported by Bethke and Wilson®. Small quantities of Si,Hg
were also synthesized by the electric discharge technique for comparison purposes®. Since
Si;Hg boils at 259 K, purification was performed in a series of low temperature distillation
steps, followed by analysis using gas chromatography/mass spectroscopy®. Purities
>99.9% were obtained exclusive of higher silanes, which are always present at ~ 1%
levels. Depositions were carried out in an inductively-coupled plasma apparatus described
elsewhere®.

INTRINSIC a-Si:H

In earlier work? we found two major differences between disilane- and monosilane-
prepared films. First, deposition from Si,Hg occurs at rates over an order of magnitude
larger than those obtained with SiH, under comparable conditions. Secondly, we have
consistently observed higher dark and AM1 photoconductivities in Si,Hg-prepared films
(substrate temperature T,=300°C). In a subsequent section we examine possible mechan-
istic reasons for the deposition rates observed from SiH, and Si;Hg. The difference in
transport properties can be ascribed to the results shown in Fig. 1. Here the activation
energies for intrinsic Si,Hg-deposited films generally fall below those of SiH,-prepared
films deposited at the same T,. This would make E -Eg smaller and thus Ep, lies higher in
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the gap. Using the Anderson-Spear model’, a higher Ep implies a lower number of

positively-charged recombination centers.
o9 T T T

) Although greater Eg could be due to n-type impur-
3 ities, we have carried out extensive chemical analysis by
electron microprobe on the film series shown in Table I.
Impurities such a P and As were not observed. Their
electrical effects on a-Si:H are known to occur at levels
well within microprobe sensitivity limits. We find, in
fact, that where non-neglible amounts of impurities are
present, photoconductivity is lowest. Si,Hg-prepared
04 .- s s samples with the lowest .inpurity l(.wels shov{ the great-
DEPOSITION TEMPERATURE (°C) est enhancements over SiH,-deposited material. Hence,
Fig. 1: Dark conductivity acti- Wwe conclude that there exist subtle but nevertheless real
vation energy for SiH, (e) and structural differences leading to the somewhat l}igher
Si,Hg (o) deposited films. photoconductivities observed for Si,H¢-prepared films.

o

(-]
T

L]

o
]
T
oe

ACTIVATION ENERGY (eV)
o
o
T
0 o0® oe

o
o
T

Table . COMPARISON OF DISILANE-PREPARED INTRINSIC a-Si(H) FILMS'

Log(ohm-cmj AE g, AEpc Comments
Sample Ppc Pdark Po V) (eV)
507(2.0) 3.37 6.77 -397 063 0.15 Si,Hg from electric discharge
659(1.2) 3.65 6.33 -3.25 057 0.13 Oxygen <200 ppm
Chlorine <60 ppm
509(2.0) 3.85 7.73 -3.73 0.68 0.16 Si,Hg from electric discharge
704(1.2) 435 17.78 —-248 0.60 0.12 Oxygen 800 ppm,;

Chlorine 70 ppm

fSubstrate temperature 300°C; r.f. power given in ( )
DOPED a-Si:H

A detailed series of experiments were carried out with n- and p-type dopants PH,,
AsH; and B,H4 mixed into the SiH, and Si,H¢ source gases. The main results of this
study are illustrated in Table II, where the room temperature conductivity is presented for
a series of monosilane and disilane films prepared under identical plasma conditions at a
gas phase doping ratio (Ngopan/Ngj)gas = 1%. Also shown is the dopant/Si ratio in the
solid and the distribution coefficient, Ceffs. For the n-type dopants we have the following
significant results. Although there is little difference between the room temperature
conductivities of SiH,- and Si,Hg-prepared films using PH,, the actual amount of phos-
phorus incorporated in each case differs significantly. Over an order of magnitude more
phosphorus must be incorporated in the SiH,-prepared films to attain a comparable
conductivity. The doping efficiency is therefore much less for n-doped SiH,-deposited
films. An even lower doping efficiency is observed for AsH;/SiH,. The conductivity is
nearly two orders of magnitude poorer, yet films show the largest actual incorporation of
n-type dopant. On the other hand, essentially the opposite result is observed for
B,H4-doping: comparably high conductivities are achieved with somewhat less boron
actually incorporated in SiH,-deposited a-Si:H. Note that with neither source gas are dark
conductivities above 102 (2-cm)~! attained on the n- or p-doped side.



