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Preface

In 1924, the Swedish chemist The(odor) Svedberg invented the analytical ultracen-
trifuge (AUC) to characterize nanoparticles. He used it, for instance, to measure
the particle size distribution of very small (4 = 2nm) gold colloid particles. Al-
ready in 1926, the Nobel Prize in Chemistry was awarded to Svedberg for his
work. Later, he expanded his investigations to biochemistry, and determined the
first molar masses of biopolymers, especially proteins, via AUC. In the following
years, the AUC became the most important instrument for the characterization of
biopolymers, culminating in the famous density gradient experiment of Meselson
and Stahl in 1957, which proved that the DNA replication mechanism, proposed by
the Nobel Prize winners Watson and Crick, was correct. Later, with the appearance
of other new methods, the AUC lost this prominent position, also because there
was no further instrumental development. Around 1980, only a few laboratories
were still dealing with AUC. This changed with (1) the launch of a redesigned,
fully computerized AUC, the Optima XL-A in 1991, and especially with the XL-A/I
in 1997 by Beckman Instruments, Inc., Palo Alto, USA, and (2) some important
instrumental developments in specialized AUC laboratories, in particular in the
new field of synthetic polymers and colloids. A renaissance of AUC was starting.

In general, analytical ultracentrifugation is a powerful method for the charac-
terization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions,
emulsions, and other colloid systems. The method is suited to determine the molar
mass, particle size, particle density, and interaction parameters such as virial co-
efficients and association constants. Because AUC is also a fractionation method,
the determination of the molar mass distribution, particle size distribution, and
particle density distribution is possible as well. A special AUC technique, the den-
sity gradient method, allows us to fractionate heterogeneous samples according to
their chemical nature, which means that the chemical heterogeneity of a sample
can be detected.

The latest textbooks on AUC were published in 1992 and 1994. They deal mainly
with biopolymers, theoretical considerations, and do not describe the new possi-
bilities of the Optima XL-A/I. It is the intention of our book to fill this gap, and to
demonstrate by means of carefully selected application examples that, especially
in the field of synthetic polymers and organic and inorganic nanoparticles, the
AUC is an excellent characterization tool for such species. Our book is written for
beginners as well as for experienced chemists, physicists and material scientists.
It allows the reader to become familiar with the actual status of instrumentation,
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which means the latest state of the art and the different AUC techniques. All these
techniques are described in a simple manner and by means of examples. Detailed
instructions for conducting experiments and for their evaluation are given, in-
cluding explanations of the theoretical background. In this laboratory manual,
emphasis is laid more on practical aspects, rather than on details of centrifugation
theory. The book is subdivided into seven chapters, concerning the history and
basic theory, instrumentation, sedimentation velocity experiments, density gradi-
ent experiments, sedimentation equilibrium experiments, application examples,
and possible future developments. In particular, the detailed application chapter
demonstrates the versatility and power of AUC by means of many interesting and
important practical industrial examples. Most of these examples stem from an
industrial AUC research laboratory of a leading chemical company, where both
authors have gained many years of experience in AUC instrumentation, and AUC
characterization of complex polymer and nanoparticle systems.

The authors wish to express their gratitude and appreciation to all colleagues
who provided experimental details and data, in particular M.D. Lechner (Os-
nabriick), T.M. Laue (Durham, NH, USA) and H. Colfen (Potsdam). The support
of many colleagues from the Polymer Research Laboratory of BASF Aktienge-
sellschaft, Ludwigshafen, Germany, in providing devices, samples and advice, is
gratefully acknowledged, above all U. Klodwig. We also would like to thank our
coworkers M. Page, U. Gonnermann and M. Stadler for their great commitment
in preparing the manuscript and the figures, and H. Roth, M. Kaiser, K. Vilsmeier
and K.H. Zimmermann, too, who carried out nearly all measurements presented
in this book in an accurate manner.

Carefully reviewing a book means lots of work but not much appreciation
for the reviewers. Therefore, the authors wish to express their deep gratitude to
Helmut Célfen (Potsdam) and Karl-Clemens Peters (Bad Diirkheim) for taking on
this difficult job.

Furthermore, the authors would like to thank the management of BASF Ak-
tiengesellschaft for supporting the publication of this book.

Last but not least, we thank our families, in particular our spouses, for their
indulgence and understanding during the long time of preparing the manuscript
of this book, when we often did not adequately take part in family life.

Ludwigshafen, November 2005 Walter Mdchtle
Lars Borger
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1 Introduction

Various questions have to be answered before writing a book about analytical
ultracentrifugation, a topic that is nowadays not of wide interest, but more a spe-
cialized recess. These questions may be summarized as follows: is it worth putting
a lot of work into a book on just one, not widely spread technique, and will there
be any readers?

To answer the latter question first: as you, the reader, hold this book in your
hands, there is obviously at least one interested reader. It is more difficult to answer
the first question. If we had not answered this question with a clear yes, you would
not be reading this introduction now. The motivation to invest this huge amount
of time in our book arises mainly from three aspects:

Firstly, the authors simply do not understand why the powerful technique we
are talking about, the analytical ultracentrifuge (AUC), is widely used in the field of
biology and adjacent areas, but to our knowledge is not, or almost never applied to
colloid and synthetic polymers (especially not in the measurement of particle size
distribution in the range 1-5000nm). One reason might be that simply nobody
knows about AUC? Here, our book may be helpful.

Secondly, also the authors believe that there is a need for a book that takes into
account the latest developments of the last decade, since the most recent books on
AUC were published in 1992 [1] and 1994 [2]. There are some other well-known,
older books dealing with analytical ultracentrifugation [3-10], starting with the
first in 1940 by Svedberg and Pedersen. However, the focus of nearly all of these
books lies on biological systems. In contrast, we would like to remind scientists of
a technique they may know but may have forgotten, and put the focus of this book
on how powerful the AUC can be, applied on synthetic polymers and colloids.

Thirdly, we would like to emphasize that in times where mega-trends such
as nanotechnology, soft materials and biotechnology are en vogue, the need for
accompanying analytical methods is increasing. By the end of this book, the reader
should be convinced, if necessary, that AUC can be a helpful tool in these modern
scientific fields.

The power of AUC is often underestimated. The reasons for this are not easy to
address. Looking back to the very beginning of this technique, one is automatically
confronted with the work of the Nobel Prize winner The(odor) Svedberg [11,12].
He invented the first practical, usable analytical ultracentrifuge (that is, an ultra-
centrifuge with an optical detecting system) in 1924, together with his coworker
Rinde, with the motivation to learn about colloidal systems, and especially about
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the size and size distribution of colloidal systems [13]; the first centrifuge that was
equipped with an optical detecting system was built by Svedberg and Nichols in
1923 [14]. Hence, writing a book focusing more on the use of AUC in colloidal
science takes us back to the origin of ultracentrifugation. In the years following
his invention, Svedberg turned his attention more from colloidal toward biologi-
cal questions, such as the determination of the molar mass of proteins [15]. The
focus of the analytical ultracentrifugation community stayed on these biological
and biochemical questions during the next decades. Still today, most publications
containing AUC investigations deal with this field of science.

The AUC was the first instrument delivering reliable values for molar masses of
biopolymers, and therefore had its outstanding place in biochemistry. To a certain
degree, AUC lost this place with the upcoming of new methods such as the laser
technique (allowing light scattering measurements), the development of electron
microscopes (EM), the polyacrylamide gel electrophoresis (PAGE), and the size
exclusion chromatography (SEC). SEC is today the dominating method to mea-
sure average molar masses M and molar mass distributions (MMD) of synthetic
polymers. All this went along with a lack of improved instrumentation after the
most suwessful AUC apparatus, the Model E by Beckman, became obsolete. Also
several other companies that built ultracentrifuges turned their interest away from
the AUC (see Chap. 2). The field of analytical ultracentrifugation was “starving”
around 1980, with just a very few laboratories still dealing with the technique. This
changed with the launch of a redesigned AUC, the Optima XL-A by Beckman in
1991, and nowadays there is a trend reversal.

Certainly, at present there is a demand for a fractionating measurement tool
such as the AUC, which provides physicochemical information on a wide choice
of topics. And this demand may increase due to the recent scientific mega-trends
described above: nanotechnology and biotechnology.

1.1 Historic Examples of Ultracentrifugation

With respect to these mega-trends, two highlights from scientific history may be
given in this introduction to illustrate the importance of AUC (and to serve as an
appetizer to read the rest of the book that contains a lot of modern examples):

(i) Investigations on gold colloids in 1924, and
(ii) Investigations on the structure of DNA in 1957.

These two historical examples have also been selected because they illustrate two
major principles of centrifugation: sedimentation velocity runs, and (density)
equilibrium runs. Both examples reflect the variety of fields covered by analytical
ultracentrifugation: while sedimentation velocity runs on colloids, first done by
Svedberg, are representative for the field of inorganic nanoparticles and colloids
in general (investigations on synthetic polymers may be implied here as well),
the Meselson-Stahl density gradient experiment stands for biochemical or pure
biological questions.
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1.1.1 Investigations on Gold Colloids in 1924

In 1926, Svedberg won the Nobel Prize in chemistry for “his work on disperse
systems”, just one year after the German chemist Zsigmondy received the prize
“for his demonstration of the heterogeneous nature of colloid solutions and for
the methods he used, which have since become fundamental in modern col-
loid chemistry”. Zsigmondy invented the ultramicroscope, and used it to prove
the particle nature of colloids with particle diameters in the nanometer range.
Later in his Nobel Prize lecture [16], Svedberg pointed out that in his opin-
ion the ultramicroscope of Zsigmondy had a big disadvantage: “The distribu-
tion of the particle size cannot be determined”. And, in fact, Svedberg invented
the analytical ultracentrifuge with the intention to determine particle size dis-
tributions of colloids by fractionation. Later, its value for the analysis of poly-
meric systems, both biopolymers and synthetic polymers, was discovered. In
fact, Svedberg chose the name ultracentrifuge in analogy to Zsigmondy’s ul-
tramicroscope.

The heart of any AUC is a rotor that contains parts called analytical cells (see
Chap. 2). These cells house the samples to be investigated. By centrifuging the
rotor at high speed, a centrifugal field is generated, and the reaction of the sample
on the field can be studied with analytical detectors. As we will see below, one of
the possible reactions of the sample to the centrifugal field is the sedimentation
of the dispersed or dissolved particles with a characteristic velocity. The under-
lying principle that allows us to learn about particle size distributions from the
ultracentrifuge is that the sedimentation velocity is in general well correlated to
particle size, in that the larger a particle, the faster it sediments. This is a major
subject of this book, and it will be discussed in detail below. Figure 1.1 shows the
original data of the sedimentation experiment that Rinde and Svedberg performed

Relative concentration

Fig. 1.1. Radial concentration distribu-
tion of a highly disperse gold colloid
in an AUC cell, recorded 5, 10, 15, and
20 min after beginning of centrifugation

o 0_'25 0"50 075 (cgn.trifugal field 28 800 times ‘gravity;
original work of The Svedberg in 1924;

reprinted with permission from [13])

Distance from surface of liquid
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on a gold colloid sample in 1924. The presented radial concentration profile of
the sedimenting colloidal gold particles inside the measuring cell, recorded every
5min, was measured in the first AUC apparatus by Rinde and Svedberg (the details
of these results will be the subject of Chaps. 2 and 3).

Each of these radial concentration profiles of gold colloids in the cell is a mea-
sure for the sedimentation velocity, or more precisely, for the sedimentation veloc-
ity distribution of the differently sized gold particles. In contrast to microscopic
methods, not only a few but all particles of the sample contribute to the measur-
ing signal in the example shown. Thus, a high statistical relevance is guaranteed.
Each of the different radial concentration profiles in Fig. 1.1, recorded at different,
well-defined times, can be converted by means of Stokes’ law into a particle size
distribution , abbreviated PSD (for details, see Chap. 3). The resulting (differen-
tial) PSD is given in Fig. 1.2. Within the errors of measurement, all these radial
concentration profiles yield the same PSD.

The historical unit pp on the axis of abscissas in Fig. 1.2 stands for mil-
limicron (also mp), and that is what we call today a nanometer (nm). Hence,
the maximum of the PSD given in Fig. 1.2 is close to 1.5nm, and the whole di-
ameter range lies between 0.7 and 2.2nm. By means of these, and comparable
AUC measurements, Rinde and Svedberg were able to demonstrate that the gold
colloids observed by Zsigmondy in his “classic” work were in fact not as nar-
rowly distributed as thought before. Obviously, Svedberg and coworkers were
able to characterize colloids that would be named nanoparticles in today’s ter-
minology. In Chap. 3, we will demonstrate that the advantages of a nanoparti-
cle analysis done by applying AUC, first performed by Svedberg, are still true
today.

4/ 140%
dr
120%
100Yp = » 5o 5wt 5 ove
BO%if === s e
60%
40% —
20%
. : Fig. 1.2. Differential particle size distribu-
5 i t tion of a highly disperse gold colloid, calcu-
0% . t T t y " ;i
0.0 10 20 3.0un lated from Fig. 1.1, taken from the original

Svedberg paper (reprinted with permission
Particle radius from [13])




