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Preface

This book arose out of lectures given by the first author to Masters
students at the University of Malta and by the second author at the
Universita Cattolica di Brescia.

This book is not intended to be an exhaustive coverage of graph the-
ory. There are many excellent texts that do this, some of which are
mentioned in the Bibliography. Rather, the intention is to provide the
reader with a more in-depth coverage of some particular areas of graph

theory. The choice of these areas has been largely governed by the re-

search interests of the authors, and the flavour of the topics covered
is predominantly algebraic, with emphasis on symmetry properties of
graphs. Thus, standard topics such as the automorphism group of a
graph, Frucht's Theorem, Cayley graphs and coset graphs, and orbital
graphs are presented early on because they provide the background for
most of the work presented in later chapters. Here, more specialised
topics are tackled, such as graphical regular representations, pseudo-
similarity, graph products, Hamiltonicity of Cayley graphs and special
types of vertex-transitive graphs, including a brief treatment of the diffi-
cult topic of classifying vertex-transitive graphs. The last four chapters
are devoted to the Reconstruction Problem, and even here greater em-
phasis is given to those results that are of a more algebraic character and
involve the symmetry of graphs. A special chapter is devoted to graph
products. Such operations are often used to provide new examples from
existing ones but are seldom studied for their intrinsic value.
Throughout we have tried to present results and proofs, many of which
are not usually found in textbooks but have to be looked for in journal
papers. Also, we have tried, where possible, to give a treatment of some
of these topics that is different from the standard published material
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(for example, the chapter on graph products and much of the work on
reconstruction).

Although the prerequisites for reading this book are quite modest (ex-
posure to a first course in graph theory and some discrete mathematics,
and elementary knowledge about permutation groups and some linear
algebra) it was our intention when preparing the book that a student
who has mastered its contents would be in a good position to understand
the current state of research in most of the specialised topics covered,
would be able to read with profit journal papers in these areas, and
would hopefully have his or her interest sufficiently aroused to consider
carrying out research in one of these areas of graph theory.

We would finally like to thank Professor Caroline Series for showing
an interest in the book when it was still in an early draft form and the
staff at Cambridge University Press for their help and encouragement,
especially Roger Astley, Senior Editor, Mathematical Sciences, and, for
technical help with IXTEX, Alison Woollatt who, with a short style file,
solved problems that would have baffled us for ages. Thanks are also
due to Elise Oranges who edited the book thoroughly and pointed out
several corrections.

The first author would also like to thank the Academic Work Re-
sources Fund Committee and the Computing Services Centre of the
University of Malta, the first for some financial help while writing this
book and the second for technical assistance. He also thanks his M.Sc.
students at the University of Malta who worked through draft chapters
of the book and whose comments and criticism helped to improve the
final product.

Josef Lauri
Raffaele Scapellato
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1

Graphs and Groups: Preliminaries

1.1 Graphs and digraphs

In these chapters a graph G = (V(G), E(G)) will consist of two disjoint
sets: a nonempty set V' = V(G) whose elements will be called vertices
and a set F = F(G) whose elements, called edges, will be unordered
pairs of distinct elements of V. Unless explicitly stated otherwise, the
set of vertices will always be finite. An edge {u,v},u,v € V, is also
denoted by uv. Sometimes E is allowed to be a multiset, that is, the
same edge can be repeated more than once in E. Such edges are called
multiple edges. Also, edges uu consisting of a pair of repeated vertices
are sometimes allowed; such edges are called loops. But unless otherwise
stated, it will always be assumed that a graph does not have loops or
multiple edges. The complement of the graph G, denoted by G, has
the same vertex-set as GG, but two distinct vertices are adjacent in the
complement if and only if they are not adjacent in G. In the chapter
on graph products we shall need a modified version of this definition:
here, the complement of G, denoted by G, also contains a loop {v,v}
whenever {v,v} is not a loop in G.

The degree of a vertex v, denoted by deg(v), is the number of edges
in F(G) to which v belongs. A vertex of degree k is sometimes said
to be a k-verter. Two vertices belonging to the same edge are said to
be adjacent, while a vertex and an edge to which it belongs are said to
be incident. A loop incident to a vertex v contributes a value of 2 to
deg(v). A graph is said to be regular if all of its vertices have the same
degree. A regular graph with degree equal to 3 is sometimes called cubic.
The minimum and maximum degrees of G are denoted by § = 6(G) and
A = A(G), respectively.

If S is a set of vertices of a graph G, then G — S will denote that graph
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obtained by removing S from V(G) and removing from E(G) all edges
incident to some vertex in S. If F'is a set of edges of G, then G — F
will denote that graph whose vertex-set is V(G) and whose edge-set is
E(G)— F. If S = {u} and F = {e}, we shall, for short, denote G — S
and G — F by G — u and G — e. respectively.

If S is a subset of the vertices of G, then G[S] will denote the subgraph
of G induced by S, that is, the subgraph consisting of the vertices in S
and all of the edges joining pairs of vertices from S.

In general, given any two sets A, B, then A — B will denote the set
consisting of all of the elements that are in A but not in B. Also, a set
containing k elements is often said to be a k-set.

An important modification of the above definition of a graph gives
what is called a directed graph, or digraph for short. In a digraph D =
(V(D),A(D)) the set A = A(D) consists of ordered pairs of vertices
from V = V(D) and its elements are called arcs. Again, an arc (u.v) is
sometimes denoted by uv when it is clear from the context whether we
are referring to an arc or an edge. The arc uv is said to be incident to v
and incident from u; the vertex u is said to be adjacent to v whereas v is
adjacent from w. The number of arcs incident from a vertex v is called its
out-degree, denoted by degq,(v), while the number of arcs incident to
v is called its in-degree and is denoted by deg;, (v). A digraph is said to
be regular if all of its vertices have the same out-degree or, equivalently.
the same in-degree.

The number of vertices of a graph G or digraph D is called its order
and is generally denoted by n = n(G) or n(D), while the number of
edges or arcs is called its size and is denoted by m = m(G) or m(D).

A sequence of distinct vertices vy, vo, . ... v+ and edges ey, €s, .. ., ek
such that each edge e; = v;v; .1 is called a path. If we allow vy and vy
to be the same vertex, then we get what is called a cycle.

The length of a path or a cycle in GG is the number of edges in the path
or cycle. A path of length % is denoted by Py while a cycle of length &
is denoted by C}.. The distance between two vertices u, v in a connected
graph G, denoted by d(u,v), is the length of a shortest path joining u
and v. The diameter of G is the length of a longest path in G and the
girth is the length of a shortest cycle.

In these definitions, if we are dealing with a digraph and the ¢; =
v;v;41 are arcs, then the path or cycle is called a directed path or directed
cycle, respectively.

Given a digraph D, the underlying graph of D is the graph obtained
from D by considering each pair in A(D) to be an unordered pair. Given
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a graph G, the digraph ‘G is obtained from G by replacing each edge in
E(G) by a pair of oppositely directed arcs.

We adopt the usual convention of representing graphs and digraphs
by diagrams in which each vertex is shown by a dot, each edge by a
curve joining the corresponding pair of dots and each arc (u,v) by a
curve with an arrowhead pointing in the direction from u to v.

A number of definitions on graphs and digraphs will be given as they
are required. However, several standard graph theoretic terms will be
used but not defined in these chapters; these can be found in any of the
references [194] or [196].

1.2 Groups
A permutation group will be a pair (I',Y) where Y is a finite set and
I' is a subgroup of the symmetric group Sy, that is, the group of all
permutations of Y. The stabiliser of an element y € Y under the action
of T' is denoted by I', while the orbit of y is denoted by I'(y). The
Orbit-Stabiliser Theorem states that, for any element y € Y,

T = [(y)| - [Tyl.

If the elements of Y are all in one orbit, then (I',Y) is said to be a
transitive permutation group and I' is said to act transitively on Y. The
permutation group I is said to act regularly on Y if it acts transitively
and the stabiliser of any element of Y is trivial. By the Orbit-Stabiliser
Theorem, this is equivalent to saying that I' acts transitively on Y and
[T'| = |Y|. Also, I' acts regularly on Y is equivalent to saying that, for
any y1,y2 € Y, there exists exactly one a € I' such that a(y,) = y».

One important regular action of a permutation group arises as follows.
Let I' be any group, let Y = T and, for any a € I', let A\, be the
permutation of Y defined by A,(3) = af3. Let L(I') be the set of all
permutations A, for all @ € I'. Then (L(T').Y") defines a permutation
group acting regularly on Y. This is called the left reqular representation
of the group I' on itself. One can similarly consider the right regular
representation of the group I' on itself, and this is denoted by (R(T"),Y).

The following is an important generalisation of the previous defini-
tions. If I' is a group and H < T, let Y = I'/H be the set of left cosets
of H € I'. For any a € T', let A¥ be a permutation on Y defined by
MNY(BH) = afH. Let L™(I') be the set of all A’f for all @ € I'. Then
(L™(T),Y) defines a permutation group that reduces to the left regular
representation of I' if H = {1}.
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Two permutation groups (I'1, Y1), (I'2, Y3) are said to be equivalent,
denoted by (I'1,Y7) = (I'2, Ys), if there exists a bijective isomorphism

¢ : 'y — I's and a bijection f :Y; — Y5 such that, for all y € Y, and
for all a« € T'y,

fla(x)) = o(a)(f(x)).

In this case we also say that the action of I'; on Y] is equivalent to the
action of I'y on Y5, and sometimes we denote this simply by I'y = I's,
when the two sets on which the groups are acting is clear from the

context.
Note in particular that, if (I'y,Y7) = (I'2, Y2), then I'} >~ I'5 as abstract
groups, |Y1| = |Yz2] and the cycle structure of the permutations of I'y on

Y7 must be the same as those of I's on Ys. However, the converse is not
true; that is, I'; and I'; could be isomorphic and the cycle structures
of their respective actions could be the same, but (I'y, Y7) might not be
equivalent to (I'y,Y3) (see Exercise 7).

Figure 1.1 shows a simple example of two graphs whose automor-
phism groups are isomorphic as abstract groups but not equivalent as
permutation groups.

Fig. 1.1. Aut(G), Aut(H) are isomorphic but not equivalent

If (I',Y) is a permutation group acting on Y and Y’ is a union of
orbits of Y, then we can talk about the action of I' restricted to Y, that
is, the permutation group (I',Y”) where, for « € I" and 3’ € Y/, a(y/) is
the same as in (I',Y). When Y” is a union of orbits we also say that it
is nvariant under the action of I', because in this case a(y’) € Y’ for all
a el and y €Y' Also, (I",Y') is said to be a subpermutation group
of (I,Y) if I” < T and Y is a union of orbits of I acting on Y.

The following is a useful well-known result on permutation groups
whose proof is not difficult and is left as an exercise.

Theorem 1.1 Let (I'Y') be a permutation group acting transitively on



1.2 Groups 5

Y. Let y € Y, let H =T, be the stabiliser of y and let W be I'/H., the

set of left cosets of H in T. Then (T.Y) is equivalent to (L™(T'). W).
If (T.Y) is not transitive, and O is the orbit containing y. then

(L™(T), W) is equivalent to the action of T on'Y restricted to O.

In the context of groups and graphs we shall need the very important
idea of a group acting on pairs of elements of a set. Thus, let (I'.Y") be
a permutation group acting on the set Y. By (I, Y x Y') we shall mean
the action on ordered pairs of Y induced by T' as follows: If o € ' and
r.y €Y, then

a((z,y)) = (afx), a(y)).

Similarly., by (T. (y))) we shall mean the action on unordered pairs of
distinct elements of Y induced by

a({z,y}) = {a(z),ay)}.
These ideas will be developed further in a later chapter.

In later chapters we shall also need the notions of k-transitivity and
primitivity of a permutation group. A permutation group (I',Y) is

said to be k-transitive if. given any two k-tuples (zy,x5...... ry) and
(y1,92, -+ yi) of distinct elements of Y, then there is an a € T' such
that

(a(zy),alxa), ..., alzk)) = (y1. Y2+ - -+ Yk )-

Thus, a transitive permutation group is 1-transitive. Also, (I',Y) is said
to be k-homogeneous if, for any two k-subsets A, B of Y, there is an
a € T such that a(A) = B, where a(A) = {a(a) : a € A}. Finally.
let (I'.Y) be transitive and suppose that R is an equivalence relation
on Y, and let the equivalence classes of Y under R be Y7,Y5, ..., Y.
Then (I'.Y') is said to be compatible with R if, for any a € I and any
equivalence class Y}, the set a(Y;) is also an equivalence class.

Any permutation group is clearly compatible with the trivial equiva-
lence relations on Y, namely, those in which either all of Y is an equiva-
lence class or when each singleton set is an equivalence class. If these are
the only equivalence relations with which (I, Y') is compatible, then the
permutation group is said to be primitive. Otherwise it is imprimitive.

If (T, Y) is imprimitive and R is a nontrivial equivalence relation on Y
with which the permutation group is compatible, then the equivalence
classes of R are called imprimitivity blocks and their set Y/R is an
imprimitivity block system for the permutation group (I',Y).
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It is an easy exercise to show that a 2-transitive permutation group is
primitive.

We shall also need some elementary ideas on the presentation of a
group in terms of of generators and relations.

Let T be a group and let X C I'. A word in X is a product of a finite
number of terms, cach of which is an element of X or an inverse of an
element of X. The set X is said to generate I' if every element in I' can
be written as a word in X; in this case the elements of X are said to
be generators of I'. A relation in X is an equality between two words in
X. By taking inverses, any relation can be written in the form w = 1,
where w is some word in X.

If X generates I' and every relation in I' can be deduced from one of
the relations w; = l.ws = 1.... in X, then we write

= (Xw =1Lwy=1,...).

This is called a presentation of ' in terms of generators and relators.
The group I is said to be finitely generated (finitely related) if | X| (the
number of relations) is finite; it is called finitely presented, or we say that
it has a finite presentation, if it is both finitely generated and finitely
related.

It is clear that every finite group has a finite presentation (although
the converse is false). Simply take X = I' and, as relations, take all
expressions of the form a;o; = ay, for all a;, «; € I'. In other words, the
multiplication table of I' serves as the defining relations.

It is well to point out that removing relations from a presentation of
a group in general gives a larger group, the extreme case being that of
the free group which has only generators and no relations.

The simplest free group is the infinite cyclic group that has the pre-
sentation

(@)

with just one generator and no defining relation, whereas the cyclic group
of order n has the presentation

(a]a™ = 1);

this group is denoted by Z,,.
The group with presentation

(a, 3)

is the infinite free group on two elements. The dihedral group of degree
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n is denoted by D,,. It has order 2n and also has a presentation with
two generators:

(o, Bla* =1,8" =1,a 'Ba = 1.

The reader is referred to [111, 166] for any terms and concepts on
group theory that are used but not defined in these chapters and, in
particular, to [35, 46] for more information on permutation groups.

1.3 Graphs and groups

Let G,G" be two graphs. A bijection « : V(G) — V(G') is called an
isomorphism if

{u,v} € E(G) & {a(u),a(v)} € E(G").

The graphs G, G’ are, in this case, said to be isomorphic, and this is
denoted by G ~ G’. Similarly, if D, D’ are digraphs, then a bijection
a: V(D) — V(D) is called an isomorphism if

(u,v) € A(D) & (a(u),a(v)) € A(D"),

and in this case the digraphs D, D’ are also said to be isomorphic, and
again this is denoted by D ~ D’.

If the two graphs, or digraphs, in the above definition are equal, then
« is said to be an automorphism of G or of D. The set of automorphisms
of a graph or a digraph is a group under composition of functions, and
it is denoted by Aut(G) or Aut(D).

Note that an automorphism « of G' is an element of Sy (), although it
is its induced action on F(G) that determines whether a is an automor-
phism. This fact, although clear from the definition of automorphism,
is worth emphasising especially because of its importance in work that
will be done in later chapters.

For example, for the graph in Figure 1.2, the permutation of edges
given by (12 23  34) is not induced by any permutation of the vertex-
set {1,2,3,4}. The only automorphisms for this graph are the identity
and the permutation (14)(23), which induces the permutation (12 34)(23)
of the edges in the graph.

The question of edge permutations not induced by vertex permuta-
tions will be considered in some more detail later in this chapter.

The process of obtaining a permutation group from a digraph can be
reversed in a very natural manner. Suppose that (I',Y) is a group of



