2nd Edition

TIME SERIES
ANALYSIS,
IDENTIFICATION
AND ADAPTIVE
FILTERING



2nd Edition

TIME SERIES
ANALYSIS,
IDENTIFICATION
AND ADAPTIVE
FILTERING

v

ROBERT E. KRIEGER PUBLISHING COMPANY
MALABAR, FLORIDA
1989



Original Edition 1984
Second Edition 1989

Printed and Published by

ROBERT E. KRIEGER PUBLISHING CO.
KRIEGER DRIVE

MALABAR, FLORIDA 32950

Copyright © 1984 by Robert E. Kreiger Publishing Co., Inc.
Copyright © 1989 (New Material) by Robert E. Krieger Publishing Co., Inc.

All rights reserved. No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including information storage and retrieval
systems without permission in writing from the publisher.

No Tiability is assumed with respect to the use of the information contained
herein.

Printed in the United States of America.

Library of Congress Cataloging-in-Publication Data

Graupe, Daniel )
Time series analysis: identification and adaptive filtering /
Daniel Graupe.—2nd ed.
p- cm.
Includes bibliographies and indexes.
ISBN 0-89464-315-0 (alk. paper)
1. Time-series analysis. 2. Fiiters (Mathematics) I. Title.
QA280.G74 1989
- 519.5'5+—dc19 . 88-14048
CIp



Preface
to the Second Edition

The second edition of this text differs from the first edition in that it includes a
new chapter on the identification of time series with inherently time varying
parameters, where piece-wise stationarity cannot be assumed. This is the new
Chapter 9. Consequently, the old chapters 9 to 12 become chapters 11 to 13,
respectively. Also, a new subsection (10.7) was added to Chapter 10 (previously
Chapter 9), 1o discuss artificial decision cells for certain adaptive decision prob-
lems with a “tcacher.” Furthermore, a second case study, dealing with the applica-
tion of time series identification to the control of electrical neuromuscular stimula-
tion of paraplegics, has been added to Appendix B, as were additional problems
and computer programs for various chapters.

The second edition also includes corrections to typos and errors which unfor-
tunately appeared in the first edition whose typesetting was not done with a word
precessor and for which the author deeply apologizes. The author is grateful to
many colleagues and students for pointing out many of these typos and errors.
Specific thanks are due to Professor Zehuan Liang of Academic Sinica, Beijing,
China, who also translated the first edition to Chinese, to Mr. Alvin Moser of the
University of lllinois at Chicago and to Mr. James Phillips of Motorola, Schaum-
burg, [llinois for bringing to the author’s attention many typos. Finally, the author
wishes to thank Dr. Wai-Kai Chen, Head of the Department of Electrical Engineer-
ing at the University of Illinois at Chicago, and to Dr. Paul Chung, Dean of the
School of Engineering at the University of Illinois at Chicago, for providing him
with an inspiring environment for his research and for their warm support through-
out his work on this edition of the text.

vii



- Preface
to the First Edition

. The advent of microprocessor technology has brought rigorous time series
analysis from the theorist’s library to industry, communications and medicine,
via its applications to adaptive control, adaptive filtering and adaptive decision
theory. This text presents a time-domain time series analysis applied to signal
processing. Its emphasis is on situations of no a priori signal-parameter knowl-
edge, of noisy measurements and of microcomputer short word-length, which
are the most likely “real-world” situations. The book attempts to unify linear
time series analysis, adaptive filtering, and adaptive control, as well as adaptive
decision and signature-discrimination or diagnosis theory. Problems of con-
vergence, convergence rate, bias and sensitivity to finite computer word-length.
which are all essential to such analysis and applications, are carefully and
rigorously discussed. The analysis is accompanied with a review of stochastic
convergence theory, including an outline of 33 fundamental martingale and
other convergence theorems. Considerations of real-time computerized appli-
cations of the theory to adaptive filtering of noise from information signals
such as speech are discussed. Also, a practical microcomputer application of
time-series analysis to controlling of prostheses for amputees and of electrical
stimulation of paraplegics via myoelectric signal signature analysis, is presented
in detail.

The text is based on a one semester, 3-credit, graduate level course given by
the author at the Electrical Engineering Department of Illinois Institute of
Technolqgy, Chicago, Illinois. It is directed to graduate engineers and applied
mathematicians in industry, and in research laboratories, who deal with problems
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X Preface to the First Edition

of (adaptive) controi, communications and (adaptive) signal processing in
engineering, medicine, geology, and econometrics.

A background in the fundamentals of probability and statistics and in matrix
theory and linear control theory is assumed. However, the text attempts to
provide background material and complementary appendices for making the
book accessible to graduate engineers whose background in these areas is rusty
or vague. It is the author’s hope that readers from industry, from research
establishments and from universities will find the book useful.

Thirteen representative computer programs and several sub-versions thereof
are appended to the text, in form of exact printouts of both the programs and
their subsequent results. These cover all the major results of the text, so that
the reader can re-run the programs to satisfy him/herself that the theory does
indeed “work.” Since the programs and the results are given as photo-copies
of what was actually executed and run (on widely accessible computers), the
reader can be confident that they are free of printing or other errors, as is so
difficult to guarantee in other text material. :

This text emanated from several runs of a graduate course at IIT, whose
earlier verzions 1 taught at Colorado State University, and during my sabbatical
leave at the University of Notre Dame and at the University of California,
Berkeley.

I am most grateful to my students in these courses. Their active participation,
discussions and questions greatly helped me in shaping the text into its present
form. In particular, I thank several of these students, who participated in my
1981 and 1983 EE 539 course at IIT, on the subject matter of this book, and
who computed and ran several programs and examples given in the book. Those
are, in alphabetical order: Joseph Bentzman, Farid E1-Wailly, Peter Holterman,
Henry Kazecki, Larry Paarmann and Steve Ruzinsky.

I am very indebted to Dr. Atsuhiko Noda of Tokyo Institute of Technology.-
to Dr. Eli Fogel of the Draper Labs., Cambridge, Mass., to Dr. Javad Salahi
of Bell Labs, Holmdel, N.J. and to Mr. John Grosspietsch of IIT, for their
careful and critical reading of the text, and for their exceilent criticisms and
detailed comments, which greatly helped to improve the text.

John Grosspietsch was of particular help in performing many of the derivations
concerning the various lattice algorithms. It is he and Mr. Stavros Basseas of IIT
who helped me by running many comparative computations of the lattice
algorithms. '

The financial support from the Applied Mathematics Program of ONR and the
encouragement of Dr. Stvart Brodsky, its former director, to various of the
author’s research projects in areas of time series analysis and adaptive systems,
is greatfully acknowledged.

The case study of Appendix B is the outcome of research formerly supported
by NSF under the direction and encouragement of Norman Caplan, Program



Preface to the First Edition xi

Director, Automation Bioengineering, Computer and Systems Engineering at
NSF.

I wish to thank Dr. Thomas Martin, President of IIT, Dr. Andre G. Vacroux,
Dean of Engineering, and Dr. Shi-Kuo Chang, Chairman of the Electrical
Engineering Department for the inspiring academic environment provided for
me at IIT during this writing.

Special thanks are due to my sons, Henny Menahem Graupe and Pelleg Pinhas
Graupe for editing and arranging the indices of the book. Henny also wrote
several test programs for the text, whereas my son Oren sacrificed computer-
games time for this purpose.

The interest and support of Mr. Robert E. Krieger, my publisher went far
beyond what one would expect of a publisher.

It is with the greatest pleasure that I thank Ms. Betty Nessinger, Ms. Debbie
Waddy and Ms. Barbara Skubiszewski for their tireless and devoted typing of
this book, through its many drafts, and Ms. Mary Bishop for her careful type-
setting of the book. Their patience with me and with my carelessness was
beyond comprehension. .

Last but not least, my endless thanks to my parents, for their inspiration
and encouragement throughout this writing. Without the continual support and
encouragement of my wife, and the patience and forgiveness of my children,
this book would have never been written.
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Chapter 1

Introduction, Goal and Outiine

.1 PREL!MINARY COMMENTS

In this text we concentraie on the analysis of discrete time series (namely,
discrete sets of observations or measurements that evolve in time), when their
properties or parameters are a-priori unknown. This lack of prior knowledge is a
very realistic situation in signal processing, predictior and control in engineering,
economics or in medicine. We shall concentrate on stochastic (probabilistic)
time series rather than on deterministic ones, since the stochastic problem is the
one of interest in the real world, and this is where the problems and the challanges
challanges lie.

Well known examples of such sotchastic time series range from seismic data,
to fluctuations of stock prices with time. Further examples are the myoelectric
(EMG) signal as it appears on an oscilloscope, the electro-encephalographic
signal or even the speech signal as displayed as a function of time on an oscillo-
scope in terms of a transducer {(microphone) output-voitage fluctuations with
time.

The stochastic form of time series does not necessarily mean that the time
series are of inherent stochastic nature or origin. Cne could argue that speech is
deterministic in origin. We seem to know and to determine which words we
utter. However, even forgeiting about environmental noise accompanying the
speech, the random nature of the speech signal itseif as viewed on an oscillo-
scope is obvious, especially in cases of unvoiced speech (“'sh”, “f”, “s” sounds
etc., at the higher range of speech frequencies, say above 1500 Hz). This is why
no two utterances of even the same word are exactly identical in their waveform

i



2 Introduction, Goal and Outline

even on an ordinary oscilloscope screen. Again, when one purchases IBM shares
one usually would think a lot about such a purchase. However, the accumulative
effect of thousands of buyers and sellers of such shares every day yields the
price variation of these shares with time which has a stochastic appearance. The
stochastic analysis is thus a macroscopic or global picture of a possibly de-
terministic, microscopic phenomena.

One could carry these arguments furhter and further, right to the foundations
of stochastic processes and of quantum mechanics [1.1], [1.2], to argue that
one may deterministically generate or simulate very accurately random processes
by means of iterative mixing transformations applied to deterministic (non-
random) functions. Hence, the boundaries between a stochastic process and a
deterministic one seem to be at best obscure.* Without going into detail that
is beyond the scope of this iext, let us say, that time series are concerned
with processes that, whether deterministic in origin or not, appear to be stochastic
and lend themselves to a stochastic analysis. Furthermore, the stochastic analysis
is much simpler ana faster for purposes of prediction, of decision making, of
filtering of relevant information from irrelevant one (“noise”), of detection, etc.,
than is the deiving into the deterministic origins, if indeed we can get there.
Hence, in relating a myoelectric signal to a certain limb function, it is far
simpler to identify a few stochastic time series parameters than to study billions
of neurons in the brain. Again, to determine the trend of stock prices, it is
faster to look at the time series of the price trends, then to interview every
buver or seller, as it is to analyze the behavior of a multitude of molecules or
particles and their collision then apply basic laws of physics to each particle
and to all its interactions.

Now, why discrete time?

The discrete time form of time series is convenient for two major reasons:
First this avoids difficulties in analysis that appear in continuous time stochastic
analysis. These difficulties are due to problems that arise in applying classical
integration theory to random variables. Roughly speaking, classical differentia-
tion and integration imply, continuity or predictability over short intervals,
whereas randomness implies the opposite. To accommodate for these difficulties,
one must employ stochastic integration theory [1.3], to complicate the analysis
considerably at best. In discrete time analysis, integrals are replaced by discrete
sums, and differentials are replaced by differences. Therefore, continuity, the

*If you flip a coin and know exactly and can adjust the initial conditions and every
detail of finger location, movement, etc., then this may be a deterministic action. Still,
if that is true, prediction wiil, of course, be very laborious. Again if you generate a sequence
by printing out y(r) = sin(f) for r = 3 k?, with k = 1,2,3,... then this is certainly very
deterministic but the result is a random-like sequence (see Prob. 1.1). This shows the power
of even most simple mixing of determinist.c functions.



Preliminary Comments 3

source of the difficulties, is no more assumed, to simplify the analysis. Secondly,
any meaningful analysis of time series is presently solely based on digital com-
putation. The digital computer is a discrete machine. Hence, a discrete time
analysis i3 only natural, as long as sampling rates are appropriate.

1.2 PURPOSE AND SCOPE

The purpose of this text is not to serve as a text for theory of time series.
This book aims at providing tcois for rigorously and efficiently employing time
series analysis for the retrieval of information imbedded in noise (as is the
usual real-world situation) when no prior knowledge of mathematical structure,
of the system’s or signal’s parameter structure, or of the noise structure is
available. This retrieval procedure is known as adaptive filtering of a-priori un-
known data from a-priori unknown noisy background (see Fig. 1.1)

At this point we feel that some further comments are in order on terminology.
regarding adaptive filtering. For the purpose of this text we consider that an
adaptive filter is a filter that serves to filter an information signal from an irrelevant
(noise) signal, where the parameters of the information signal or of the noise signal
or of both are a-priori unknown, and (both) are not necessarily white noise. No
access to the information signal alone or to the noise signal alone is assumed.

In the most g=neral case where neither the parameters of the information signal
nor those of the noise are a-priori known, then some prior feature-information
(other than parameter knowledge) must be available regarding the parameters of
signal or of noise in order that adaptive filtcring can be rigorously performed (this
feature information may be, for example, in terms of model order, of rate of
parameter variation, etc.)

We thus consider situations where only an information signal is considered
(which is accessible) and whose parameters require identification, to be a time
series identification problem and not an adaptive filtering problem (as is often
assumed in the literature). We consider a situation where information signal and
noise exist, but where their parameters are known, to be a non-adaptive filtering
problem. Filtering when either signal parameters or roise parameters are known, is
considered below as an adaptive filtering problem with partial knowledge.

This text derives time series analysis and identification theory specifically for
the purposes of developing an adaptive filtering theory that is powerful enough
under the above situation of lack of prior parameter know'zdge. rience, to be
consistent with such a degree of ignorance, our analysis must drop assumptions
that may be mathematically convenient but unrealistic in our real world of igno-
rance (and where adaptive filtering is of so much need), such as that the signals are
Gaussian or that they are stable. If an adaptive filter (controller) loses control in the
face of a fault that causes instability, then what is our effort good for? Therefore,
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Inaccessible Input

to Noise Model
? Unknown Noise Model
INciu
Inaccessible
lngut to 9 Measurement
I : i
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Unknown (Inaccessible)
Model for
Information
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Adaptive
Filter
Filtered Estimate of
Information Signal
COMMENT: In this generalized schematic of adaptife filtering, both the information-signal and the
noise have unknown math ical models (unknown ics). Certain adaptive filters,

however, assume knowledge of the mathematical model of one or the other, as discussed
in Chapter 11 below, whereas others require only some general structure information

Fig. 1.1 Unknown noise.

this is not a classical text on time series, but is concentrates on what is useful vis-a-
vis adaptive filtering. Since such a degree of ignorance requires parameter identi-
fication before everything, a major effort of the text is directed towards identifica-
tion. Hence again, we cannot assume stability or invertibility or Gaussianity, as we
cannot do elsewhere in the text. ’

Again, when we deal with non-stationarity, we assume instability or fast varia-
tions of parameter values, where the parameters themselves (and not just the
signal, say, the AR parameters) are stochastic time series, as is most often ignored
in the literature but as exists in the real world.

Now, what is adaptive filtering for? We already mentioned separation of
relevant information from “noise,” say, of speech from noise. The scope of use
of adaptive filtering is of course far beyond this. Adaptive filtering is applicable
to prediction of an information-signal of unknown parameters (unknown mathe-
matical model), when received in (usually) unknown measurement noise. It
extends to detection and decision on the existance of a certain class of signals
(of unknown parameters) some of which may be contaminated by unknown
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noises. An example of this situation is the decision that the presently generated
myoelectric signal is to activate one (particular) of six different joint movements
of an artificial limb of an amputee or of a powered orthotic device for a partly
paralyzed person, as in Appendix B below [1.4]. Another class of applications
is to controlling a system (a process, a plant) or to navigating a system (of
unknown parameters) on the basis of system’s data imbedded in measurement
noise of unknown parameters—see Fig. 1.2. This type of control or navigation
problem is a very common control situation in noisy environments. Adaptive
filtering plays a major role if that control problem. is extended to become a
(self-) adaptive control problem, where in addition to noisy measruements in
a-priori unknown noise we have also that the process or system to be controlled
is unknown, or of time varying parameters, which again is a very realistic
situation.

The solutions of adaptive decision, classification and detection problems with
unknown parameters as above, and of adaptive control in unknown noise and
with unknown parameters, depend largely, if not solely, on solving the time series
identification and the adaptive filtering problems imbedded in them. Hence,
this text will consider them in the framework of time series analysis and adaptive
filtering.

All the above have in common the filtering of signal or information from
noise {in the adaptive decision problem) or from irrelevant information with
Zfferent degrees of parameters uncertainties, t oc¢ dealt with vig time series
analysis methods developed in the text. The filtering problem may thus be for
noise removal purposes, for control, for classification or for detection purposes.

Considering identification, and since for adaptive filtering and control in real
time, the fastest possible adaptation is required, it follows that fast identification
is essential. This implies convergence of one identifier at the fastest possible rate,
namely that adequate identification is achieved for the least amount of informa-
tion (that one need not wait for too many data points for obtaining a good
parameter estimate). This in turn calls for Least Squares (LS) identifiers which
can be shown to possess the fastest possible convergence rates as is discussed in

Inaccessible Input
to Noise Model

System Unknown Model
Control (Process to be controlled)
Input m ) d\ -
- ' State/Output “\/ Measurement Z
of System to be (Accessible)
;J;:’l;::)wn Controlled
(Inaccessible)
Controller Estimate of p~
e —<-——  (Control < ilter P
Computer) (Adaptive)
p! State of System

to be Controlled

Fig. 1.2 Schematic of generalized structure of an adaptive control system (to control
unknown system in unknown noise).



