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Introduction: Stability Approach and Nonlinear
Models

The S-Theorem

This book contains the description and application of a method of asymptotic analy-
sis, a new stability theorem that we call the S-Theorem, originated in the study of the
large-time behaviour of a class of partial differential equations known generally as
nonlinear reaction-diffusion equations. These equations are among the best-known
equations of mathematical physics. But, as shown in the text, the method has a more
general scope in the study of evolution problems which can be posed in an abstract
setting as infinite-dimensional dynamical systems. This is why we often refer to it as
a Dynamical Systems Approach.

The study of asymptotic behaviour of solutions of evolution equations is a clas-
sical subject of mechanics and dynamical systems, and a number of quite effective
methods have been developed, such as Lyapunov techniques, stable and centre man-
ifold analysis, scaling and renormalization group arguments, etc. These methods can
be used quite successfully to understand the asymptotic properties of many quasi-
linear reaction-diffusion equations, also known as nonlinear heat equations, in par-
ticular, when they admit global-in-time solutions, so that no essential singularities
occur in the large-time evolution. In principle, we will not deal with such problems
with known global behaviour, and will be concerned with problems that exhibit a
complicated structure of asymptotic patterns that makes our analysis necessary or
convenient.

The method presented here is suitable for application to different evolution prob-
lems described by nonlinear partial differential equations (PDEs) of parabolic or
hyperbolic type, involving first-order, second-order or higher-order operators, many
of them admitting free boundaries, or for other types of equations or systems. The
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common feature is that these evolution problems can be formulated as asymptoti-
cally small perturbations of certain dynamical systems with better-known behaviour.
Now, it usually happens that the perturbation is small in a very weak sense, hence
the difficulty (or impossibility) of applying more classical techniques.

Though the method originated with the analysis of critical behaviour for evolu-
tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ-
ential equation (NDE)

ur=Aw)+Cu,t), t>0, (H

where u has values in a Banach space, like an L? space, A is an autonomous
(time-independent) operator and C is an asymptotically small perturbation, so that
C(u(t), ) — Oast — oo along orbits {u(r)} of the evolution in a sense to be made
precise, which in practice can be quite weak. We work in a situation in which the
autonomous (limit) differential equation (ADE)

u, = Au) 2

has a well-known asymptotic behaviour, and we want to prove that for large times
the orbits of the original evolution problem converge to a certain class of limits of
the autonomous equation.

More precisely, we want to prove that the orbits of (NDE) are attracted by a
certain limit set €, of (ADE), which may consist of equilibria of the autonomous
equation, or it can be a more complicated object. A set of three basic requirements
allows this conclusion, the main one being the Lyapunov stability of the closed set
Q., and this is the contents of the S-Theorem. It is typical of standard methods
that such stability assumptions have to be imposed on the original equation (NDE).
An important feature of our method is that it places the stability assumption on the
limit equation (ADE). Note also that the convergence result does not depend on the
knowledge of any rate of decay for the perturbation C(u, ) as ¢ grows.

In Chapter 1 we state our main stability theorem (S-Theorem, in short). We es-
tablish that under three hypotheses (H1)—(H3), the omega-limit set of a perturbed
dynamical system is stable under arbitrary asymptotically small perturbation. This
result will be used throughout the book. The problem has been formulated above for
convenience in the language of differential equations, but actually the S-Theorem is
of a more general character, and applies to abstract dynamical systems posed in a
complete metric space.

Asymptotics of nonlinear evolution PDEs

The rest of the book is devoted to the study of a selection of nonlinear asymptotic
phenomena which occur for classes of equations involving different nonlinear oper-
ators. Indeed, the second goal of the book is to contribute a number of techniques
and results to the wide field of asymptotics of nonlinear evolution PDEs.
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The concrete examples of application have been chosen because they are relevant
asymptotic problems that attracted the interest of the authors, were not covered by
existing theories, and motivated the development of this theory. We present nine main
examples, starting with classical reaction-diffusion-convection theory, and go on to
cover subjects in blow-up, fluid flows (Navier—Stokes), Hamilton—Jacobi and fully
nonlinear equations. We contribute to the theory of such equations, describe some
general nonlinear effects and present a classification of the involved singularities.

Indeed, a first motivation of the theory has been the study of typical models of
nonlinear diffusion. We devote Chapter 2 to presenting the main equations along
with the concepts, tools and typical results on existence, uniqueness and differential
properties of weak solutions, that might be useful in setting the context, as a tech-
nical preliminary for subsequent chapters. We will in particular examine the known
asymptotic properties as t — 00. We demonstrate basic mathematical tools devel-
oped in the second half of the twentieth century on a benchmark equation, the Porous
Medium Equation (PME, in short)

ur = Au™ in RV x Ry, (3)

where m > 1 is a fixed exponent. For m = 1 it is just the classical Heat Equation.

In subsequent chapters, our text contributes to the general theory by supplying a
further analysis tool that has allowed the authors to perform a complete asymptotic
study in a number of open cases, many of them involving critical situations and
striking phenomena of singularity formation. Especially, we will be interested in
blow-up properties, when solutions become unbounded (in L* or in another natural
norm) after a finite time.

Before we proceed with the outline of the applications, let us try to understand
in a few words why the study of nonlinear evolution equations or reaction-diffusion
type leads to the consideration of small asymptotic perturbations of better-known
autonomous dynamical systems.

Consider the case of critical diffusion-absorption treated in Chapter 4. It is well
known that the solutions of the heat equation u; = Au and the PME (3) posed in
the whole space RV with integrable initial data ug € L' (RV), decay as t — oo like
O(¢t™*) for an exponent « that is shown to be « = N/[N(m — 1) +2].

When we want to be more precise we rescale (i.e., we zoom) the variable u into
a new variable 6 that equals u times the decay factor #%, hence it has size O(1) for
large ¢. But if we want 6 to be a solution of a nice equation we have to also re-scale
space in the form x = & t*/N. We are also interested for the same reason in using
logarithmic time © = In¢. This is all well known using dimensional analysis and
exploits the property of scale invariance of the equation, and leads to the rescaled
PME for 6(&¢, v) = t* u(x, t):

6: = A(B) = AO™ + £ £ . V0 +ab. @)

It is an autonomous equation and its solutions tend to a nontrivial equilibrium,
namely, the Gaussian kernel if m = 1, and the ZKB profile if m > 1. The asymptotic
profile of the original problem is now read as the transformation of that equilibrium
in terms of u.
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Suppose now that you consider the more complicated model equation
up = Au™ — uP, 5)

with B8, m > 1. This is a model of nonlinear diffusion in an absorptive medium, well
known in the literature. The absorption term is not an asymptotically small perturba-
tion in principle. Now, we happen to know that the decay rate for this equation is the
same as before when B > B, = m + 2/N. If this is so we perform the same type of
re-scaling to find

0. = A@6)+C@, 1), C@o,7) = —e770P, o= (B—Bx. (6)

In this form we arrive at an asymptotically small perturbation of the rescaled PME
(4) and the problem falls into the scope of the text. The appearance of the small
exponential factor reminds us that we have lost the scale invariance in the original
equation (5). Curiously, the most difficult analysis occurs for the critical case B8 = B,
where we will concentrate the attention, and is naturally done with the S-Theorem.

Description of the applications

In Chapter 3 we perform a first application of the S-Theorem to study the asymptotic
behaviour of nonnegative solutions for the equation of superslow diffusion which in
N-dimensional geometry takes the form

ur = A(e™ ). )

It can be treated as a formal limit case of the PME with m = oo. We separately
consider the initial-value problem for # > 0 in a bounded domain 2 C RY and
the Cauchy problem in R x R.. Interesting transformations are needed to present
those problems as small asymptotic perturbations of some well-known equation, and
this is an important aspect of the theory. It turns out that in these two problems the
asymptotic patterns look similar, but the rescaled variables and perturbed equations
differ essentially. In the case of the bounded domain the rescaled equation with small
asymptotic perturbations is rather involved and is given by

41Int 2
0, = A(O) + 6 A0 += (6 —01n6 AB)
41n? 41
+ 10 A0 — 616 A0 + 56 (In6)? A0,
T T B

with A(6) = 6 Af + 6.
In Chapter 4 we describe the asymptotic behaviour of a PME with absorption in
the case of a critical exponent,

up = Au™ —uf in RV xRy, B=pB.=m+2/N. (8)
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The exponent B, (often called critical Fujita exponent for equations with source
term +u”) has been chosen because it is precisely the case when more standard
methods of asymptotic analysis fail. Briefly explained, the difficulty stems from the
fact that the two operators on the right-hand side have effects of the same order of
magnitude, as can be easily shown by dimensional analysis or scaling. Thus, in the
rescaling calculations done above for 8 > B,, we see that the perturbation is not
small when we pass to the limit 8 — B,. Consequently, the problem exhibits a
typical critical situation, which is called a resonance in physical parlance. One of
the main consequences is that the decay rate is modified to include extra logarithmic
factors (a typical feature of resonance in dynamical systems).

The authors used the S-Theorem in 1991 to prove that all weak, space-integrable
solutions behave for r — oo as a unique orbit of the PME without absorption, and
the resonance is felt as a rescaling in u and x by slow-growth unbounded factors, log-
arithmic functions of time. This is an example of a transitional behaviour between
two different asymptotic structures for 8 < B, and B > B. The behaviour for the
critical exponent 8 = B, then inherits certain features of both the subcritical and the
supercritical ranges. This kind of transitional behaviour has a quite general nature
and occurs for other equations; we will present some other instances of the phe-
nomenon. The paper [169] was the first instance of an application of the “dynamical
systems approach with asymptotically small perturbations” developed in this book.

Chapter 5 deals with the asymptotics of a problem involving extinction. Ex-
tinction in finite time is the term which denotes the phenomenon whereby a posi-
tive solution of an evolution process becomes identically zero after a finite time T,
u(-, T) = 0. The phenomenon is also called complete quenching. It is well known
that this is not possible for the standard problems associated to the heat equation and
other parabolic evolution operators with good coefficients. The phenomenon arises
in nonlinear equations due to the presence of terms that either degenerate or are sin-
gular at u = 0. The extinction of a solution is usually associated with the formation
of a singularity for the solution at the level of some derivative. Therefore, it can be
understood as blow-up for the derivatives of the solution, with the advantage that the
L norm of the solution itself remains bounded. In this chapter we still consider the
PME with absorption, but the presence of a strong absorption term produces extinc-
tion. We concentrate on the equation with another critical exponent

ur=Au" —uP, m>1, p=p,=2—-—m<1. 9)

In this case the singular behaviour close to the extinction time,t - T < o0, is
governed by the ODE without diffusion:
Ur = —uz_m.

This is the first time that we face the case of singular perturbation: the limit equation
is of lower order than the original PME with absorption. As is well known from the
theory of singular perturbations, the passage to the limit becomes a hard problem. In
order to apply the S-Theorem, we need to prove several estimates on rescaled orbits
in a metric space C, with a singular weight.
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We follow with two chapters where the S-Theorem is used in combination with
the technique of Matched Asymptotic Expansions. This is a very important tool of
asymptotic analysis that is needed to reflect the multiple behaviour of many problems
arising in several applied fields, hence our interest in the study that combines both
machineries. Chapter 6 is devoted to the study of the fast diffusion equation with
critical parameter

u,=Au™ in RN xRy, m=my=(N—-2)/N, N=>3. (10)

We establish that m = m, corresponds to the transition between two different types
of self-similar asymptotic behaviour in a neighbourhood of the critical value for m >
my (self-similarity of the first kind given by the ZKB solution), and 0 < m < my
(self-similarity of the second kind). As a consequence, we describe two different
asymptotic domains, the outer and the inner ones, with quite different asymptotic
scalings. The leading part of the asymptotics in the outer domain is governed by a
radial solution of the first-order equation (the conservation law)

v+ NOWN=2/Ny =0, where s =In|x],

to which the stability theory applies. The inner one has a simple “flat” shape and
some parabolic properties are necessary to match both the asymptotics.

Chapter 7 is devoted to the PME in exterior domains. We need to use expansions
in the inner and outer regions and a matching procedure (the approach is different
from that in Chapter 6). The main feature of the topic is the role played by singular
solutions as asymptotic limits in the S-Theorem. We address here the critical situa-
tion that appears in dimension two and produces a typical In (¢) factor in the delicate
matching process.

We cover next some topics from fluid mechanics. In Chapter 8 we turn to a clas-
sical problem and study a singularly perturbed dynamical system which describes
some special blow-up patterns of the Navier-Stokes equations in R?,

Ur + uuy +vuy = —py/p + vAu,
v + uvy + vvy = —py/p +vAv, (11)
uy +vy =0,
where (u, v) is the velocity field, p is the pressure, p > O is the constant density

and v > 0 is the constant kinematic viscosity. We are interested in the particular
solutions similar to the famous stationary von Kdrmdn solution of the form

u= / fz,t)dz, v=-yf(x,t), p=h(x,t).
0

They describe a plane jet with a stagnation point at (0, 0) and free boundaries. Then
the function f solves a semilinear nonlocal heat equation

f!+(‘/(; f(zvt)dz)fx_f2="fxx
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with free boundary conditions. We study the first stable blow-up pattern which gives
the asymptotic structure of the plane jet for the Navier-Stokes equations. In par-
ticular, we prove that asymptotically this generic blow-up pattern is described by a
nonlocal semilinear first-order Hamilton—Jacobi equation

f:+</0xf(z,t)dz>fx—f2=0,

so that this asymptotic analysis falls in the scope of a singular perturbation theory.

In Chapter 9 we study a problem of blow-up, i.e., the solutions become un-
bounded in a finite time, and the profile that is formed at this time is under inves-
tigation. Blow-up is a major area of research in nonlinear evolution equations, cf.
[32, 180, 286]. We consider the semilinear equation with “almost linear” reaction
term

ur=tyy + (1 +u)In>(1 +u) in R x R, (12)

The study presents an important aspect, i.e., the asymptotic degeneracy of the
parabolic equations near blow-up. More concretely, we prove that for bounded bell-
shaped initial data ug(x) > 0, the asymptotic behaviour as # — T is described by
the nonlinear quadratic Hamilton—Jacobi equation

 (uy)?
T 14u

Uy + (14 u) In*(1 + w),

and the S-Theorem makes it possible to pass to the limit in a singularly perturbed
dynamical system. Finally we prove that this equation exhibits regional blow-up
where the blow-up set for bell-shaped data has a finite length equal to 27r. We also
study periodic blow-up patterns and their localization. This work was developed in
the paper [173], written in 1991, and was a major source of inspiration in developing
the idea of reduced omega-limit sets, an important ingredient in the sharp formulation
of the S-Theorem.

In Chapter 10 we present a general theory of such degeneracy effect of conver-
gence to Hamilton—Jacobi solutions. It applies to a class of quasilinear equations
with different types of blow-up, such as single-point, regional or global blow-up. As
a basic model, we classify the asymptotics of the quasilinear heat equation

ur =V - (In° (1 + w)Vu) + (1 + u)(n(l + u))P@+H-o (13)

for different values of the parameters ¢ > 0 and B > 1. It is important that this
equation describes all three types of blow-up: (i) regional for 8 = 2, (ii) single-point
for B > 2 and (iii) global if B € (1,2). The asymptotic blow-up patterns are proved
to have different space-time structures in these three cases.

We perform in Chapter 11 the asymptotic analysis of a fully nonlinear parabolic
equation from detonation theory. The parabolic equation

ur + 3(ux)? = f(cuugy) +nu (¢ > 0) i
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with a smooth strictly monotone increasing function, f(s) = In((e® — 1)/s), de-
scribes unstability of the square Zel’dovich-von Neuman-Doering (ZND) wave in
detonation theory. The model is due to Buckmaster and Ludford. We study the fi-
nite time quenching behaviour as ¢+ — T when an initially strictly positive solu-
tion touches the singular level # = 0, where the diffusion-like operator degenerates
and the absorption term Inu becomes singular. We establish that this behaviour is
described by a singularly perturbed linear first-order equation of Hamilton—Jacobi
type. It is important that the solution does not admit any proper continuation beyond
quenching time, for > T. This means complete collapse of the ZND-wave at the
quenching point.

We add a last Chapter 12, where we briefly describe further, sometimes not very
straightforward, extensions and generalizations, and give a list of related references.
We show how to extend our dynamical system approach by using an extra topolog-
ical structure in the metric space and hence modifying the notion of the uniform
Lyapunov stability. Under a suitable assumption on the corresponding topological
structure of the reduced omega-limit set of the autonomous equation, we then obtain
more detailed description of the omega-limits of a class of individual orbits. Another
new application is time-dependent homogenization-like problems for the PME or
other parabolic equations with highly oscillatory coefficients.

We also demonstrate that the S-Theorem exhibits natural applications to a num-
ber of problems for higher-order parabolic equations with reaction/absorption-like
terms, and as typical examples we treat the semilinear 2m™-order equations

up=—(—A)"u+ u|P 'y in R¥ xR, (15)

with integer m > 1 and exponent p > 1, which induce typical examples of semi-
groups without order-preserving properties (available for m = 1 only via the Maxi-
mum Principle).

Summing up, the nonlinear models described above play the role of key examples
in explaining some crucial distinctive features of the applications of the stability the-
orem (Chapter 1) to a class of similar perturbed dynamical systems. Of course, such
an analysis admits various extensions and generalizations to wide classes of prob-
lems, where a similar kind of perturbations occurs. We describe such generalizations
in Remarks at the end of each chapter.

The equations and problems we deal with were mostly well known and were ac-
tively studied from different points of view in the last two decades in the framework
of the growing theory of nonlinear partial differential equations, and the questions
of (local-in-time) existence, uniqueness and regularity of solutions are documented
in the literature. We present suitable references in the final section (remarks and
comments on the literature) of each chapter. Though we have selected applications
involving nonlinear heat equations, the abstract stability theory, on which the analy-
sis relies, has a wider scope, and some of the examples are directed to promote such
extension.

This book presents a unified approach to the study of the asymptotic behaviour
of several classes of nonlinear equations. The main results were obtained by the au-
thors during the last twelve years. These classes of asymptotic problems for nonau-
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tonomous dynamical systems were not discussed in monographs on the theory of
nonlinear PDEs.

Prerequisites and use

The book assumes some knowledge of the fundamentals of partial differential equa-
tions, ordinary differential equations, and functional analysis. A certain exposure to
dynamical systems will be helpful as background to understand the main result and
the general philosophy. The examples of application which form the bulk of the book
assume some knowledge of the main topics of nonlinear partial differential equations
of evolution type and their asymptotics, e.g., global or local well-posedness and Lya-
punov techniques. It is not an absolute prerequisite to read our corresponding intro-
ductory text but it explains the context and why the present method is useful. Much
of the necessary material on basic theory and asymptotics of nonlinear heat equa-
tions is summarized in Chapter 2, where further references are given. More general
references are [293] and [286], which deals in great detail with blow-up problems.
Explanations, references and hints will be given as the text proceeds.

The book is meant for an advanced graduate level and can be taught to students
in mathematics and physics interested in evolution equations and asymptotics in one
semester if a proper selection of the topics is made. It can be combined with standard
evolution equations and asymptotics topics into a whole year in various ways. The
whole text could serve as a reference work on the S-Theorem and its applications.
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