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1, Working with Generics

Without a doubt, C# 2.0 added a feature that continues to have a big
impact on how you write C# code: generics. Many articles and papers have
been written about the advantages of using generics over the previous ver-
sions of the C# collections classes, and those articles are correct. You gain
compile-time type safety and improve your applications’ performance by
using generic types rather than weakly typed collections that rely on
System.Object.

Some articles and papers might lead you to believe that generics are use-
ful only in the context of collections. That’s not true. There are many other
ways to use generics. You can use them to create interfaces, event handlers,
common algorithms, and more.

Many other discussions compare C# generics to C++ templates, usually
to advocate one as better than the other. Comparing C# generics to C++
templates is useful to help you understand the syntax, but that’s where the
comparison should end. Certain idioms are more natural to C++ tem-
plates, and others are more natural to C# generics. But, as you'll see in Item
2 abit later in this chapter, trying to decide which is “better” will only hurt
your understanding of both of them. Adding generics required changes to
the C# compiler, the Just In Time (JIT) compiler, and the Common Lan-
guage Runtime (CLR). The C# compiler takes your C# code and creates the
Microsoft Intermediate Language (MSIL, or IL) definition for the generic
type. In contrast, the JIT compiler combines a generic type definition with
a set of type parameters to create a closed generic type. The CLR supports
both those concepts at runtime. :

There are costs and benefits associated with generic type definitions.
Sometimes, replacing specific code with a generic equivalent makes your
program smaller. At other times, it makes it larger. Whether or not you
encounter this generic code bloat depends on the specific type parameters
you use and the number of closed generic types you create.

Generic class definitions are fully compiled MSIL types. The code they
contain must be completely valid for any type parameters that satisfy the
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constraints. The generic definition is called a generic type definition. A
specific instance of a generic type, in which all the type parameters have
been specified, is called a closed generic type. (If only some of the param-
eters are specified, it’s called an open generic type.)

Generics in IL are a partial definition of a real type. The IL contains the
placeholder for an instantiation of a specific completed generic type. The
JIT compiler completes that definition when it creates the machine code
to instantiate a closed generic type at runtime. This practice introduces a
tradeoff between paying the increased code cost for multiple closed generic
types and gaining the decreased time and space required in order to store
data.

Different closed generic types may or may not produce different runtime

_representations of the code. When you create multiple closed generic types,
the JIT compiler and the CLR perform some optimizations to minimize
the memory pressure. Assemblies, in IL form, are loaded into data pages.
As the JIT compiler translates the IL into machine instructions, the result-
ing machine code is stored in read-only code pages.

This process happens for every type you create, generic or not. With non-
generic types, there is a 1:1 correspondence between the IL for a class and
the machine code created. Generics introduce some new wrinkles to that
translation. When a generic class is JIT-compiled, the JIT compiler exam-
ines the type parameters and emits specific instructions depending on the
type parameters. The JIT compiler performs a number of optimizations to
fold different type parameters into the same machine code. First and fore-
most, the JIT compiler creates one machine version of a generic class for
all reference types.

All these instantiations share the same code at runtime:

List <string> stringlist = new List<string>();
List<Stream> OpenFiles = new List<Stream>();
List<MyClassType> anotherlList = new List<MyClassType>();

The C# compiler enforces type safety at compile time, and the JIT compiler
can produce a more optimized version of the machine code by assuming
that the types are correct.

Different rules apply to closed generic types that have at least one value
type used as a type parameter. The JIT compiler creates a different set of
machine instructions for different type parameters. Therefore, the fol-
lowing three closed generic types have different machine code pages:
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List<double> doublelList = new List<double>();
List<int> markers = new List<int>();
List<MyStruct> values = new List<MyStruct>();

This may be interesting, but why should you care? Generic types that will
be used with multiple different reference types do not affect the memory
footprint. All JIT-compiled code is shared. However, when closed generic
types contain value types as parameters, that JIT-compiled code is not shared.
Let’s dig a little deeper into that process to see how it will be affected.

When the runtime needs to JIT-compile a generic definition (either a
method or a class) and at least one of the type parameters is a value type,
it goes through a two-step process. First, it creates a new IL class that rep-
resents the closed generic type. I'm simplifying, but essentially the run-
time replaces T with int, or the appropriate value type, in all locations in
the generic definition. After that replacement, it JIT-compiles the necessary
code into x86 instructions. This two-step process is necessary because the
JIT compiler does not create the x86 code for an entire class when loaded;
instead, each method is JIT-compiled only when first called. Therefore, it
makes sense to do a block substitution in the IL and then JIT-compile the
resulting IL on demand, as is done with normal class definitions.

This means that the runtime costs of memory footprint add up in this
way: one extra copy of the IL definition for each closed generic type that
uses a value type, and a second extra copy of machine code for each
method called in each different value type parameter used in a closed

generic type.

There is, however, a plus side to using generics with value type parameters:
You avoid all boxing and unboxing of value types, thereby reducing the
size of both code and data for value types. Furthermore, type safety is
ensured by the compiler; thus, fewer runtime checks are needed, and that
reduces the size of the codebase and improves performance. Furthermore,
as discussed in Item 8, creating generic methods instead of generic classes
can limit the amount of extra IL code created for each separate instantia-
tion. Only those methods actually referenced will be instantiated. Generic
methods defined in a nongeneric class are not JIT-compiled.

This chapter discusses many of the ways you can use generics and explains
how to create generic types and methods that will save you time and help
you create usable components. I also cover when and how to migrate .NET
1.x types (in which you use System.0Object) to .NET 2.0 types, in which
you specify type parameters.
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Item 1: Use Generic Replacements of 1.x Framework API Classes

The first two releases of the .NET platform did not support generics. Your
only choice was to code against System.Object and add appropriate run-
time checks to ensure that the runtime type of the object was what you
expected, usually a specific type derived from System.Object. This prac-
tice was even more widespread in the .NET Framework, because the
framework designers were creating a library of lower-level components
that would be used by everyone.

System.Object is the ultimate base class for every type you or anyone
else creates. That led to the obvious decision to use System.Object as a
substitute for “whatever type you want to use in this space.” Unfortunately,
that’s all the compiler knows about your types. This means that you must
code everything very defensively—and so must everyone who uses your
types. Whenever you have System.Object as a parameter or a return type,
you have the potential to substitute the wrong type. That’s a cause for run-
time errors in your code.

With the addition of generics, those days are gone. If you've been using .NET
for any period of time, you’ve probably adopted the habit of using many
classes and interfaces that now should be cast aside in favor of an updated
generic version. You can improve the quality of your code by replacing
System.Object with generic type parameters. Why? It’s because it’s much
harder to misuse generic types by supplying arguments of the wrong type.

If correctness isn’t enough to motivate you to replace your old Sys-
tem.Object code with generic equivalents, maybe performance will get
you interested. NET 1.1 forced you to use the ultimate base class of Sys-
tem.Object and dynamically cast objects to the expected type before
using them. The 1.1 versions of any class or interface require that you box
and unbox value types every time you coerce between the value type and
the System.Object type. Depending on your usage, that requirement may
have a significant impact on performance. Of course, it applies only with
value types. But, as I said earlier, the weakly typed systems from the 1.1
days require both you and your users to author defensive code to test the
runtime type of your parameters and return types. Even when that code
functions correctly, it adds runtime performance costs. And it’s worse
when it fails; the runtime costs probably include stack walks and unwind-
ing when casts throw exceptions and the runtime searches for the proper
catch clause. You run the risk of everything from costly application slow-
down to abnormal application termination.
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A good look at the .NET Framework 2.0 shows you how much you can
transform your code by using generics. The obvious starting point is the
System.Collections.Generics namespace, followed by the System.Col-
lections.ObjectModel namespace. Every class that is part of the Sys-
tem.Collections namespace has a new, improved counterpart in
System.Collections.Generics. For example, ArrayList has been
superseded by List<T>, Stack has been replaced by stack<Ts,
Hashtable has been replaced by Dictionary<k, V>, and Queue has been
replaced by Queue<T>. In addition, there are a few new collections, such as
SortedList<T> and LinkedList<T>.

The addition of these classes meant the addition of generic interfaces.
Again, the System.Collections.Generics namespace points to the
obvious examples. The original IList interface has been extended with
IList<T>. All the collections-based interfaces have been similarly
upgraded: IDictionary<K, V> replaces IDictionary, TEnumerable<T>
extends TEnumerable, IComparer<T> replaces IComparer, and ICol-
lection<T> replaces ICollection.

I say “extends” and “replaces” deliberately. Many of the generic interfaces
derive from their nongeneric counterparts, extending the classic capabil-
ity with upgraded, type-specific versions. Other classic interfaces are not
part of the signature of the newer interfaces. For a variety of reasons, the
newer interface method signatures aren’t consistent with the classic inter-
faces. When that happened, the framework designers chose not to tie the
new interface definitions to an outdated interface.

The .NET 2.0 Framework has added an IEquatable<T> interface to min-
imize the potential errors involved in overriding System.Object .Equals:

public interface IEquatable<T>
{
bool Equals(T other);

}

You should add support for this interface wherever you would have over-
written System.Object .Equals.

If you need to perform comparisons on a type defined in another library,
the .NET 2.0 Framework has also added a new equality interface in the
generic collections namespace: IEqualityComparer<T>. This interface
has two methods: Equals and GetHashCode.
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public interface IEqualityComparer<T>
{

int Equals( T x, T y);

int GetHashCode(T obj);
¥

You can create a helper class that implements TEqualityComparer<T>
for any third-party type you use today. This class works like any class that
implements the 1.1 version of THashCodeProvider. It enables you to cre-
ate type-safe equality comparisons for your types, deprecating the old ver-
sions based on System.Object. You'll almost never need to write a full
implementation of IEqualityComparer<T> yourself. Instead, you can use
the EqualityComparer<T> class and its Default property. For example,
you would write the following EmployeeComparer class, derived from
EqualityComparer<T>, to test the equality of Employee objects created
in another library:

public class EmployeeComparer : EqualityComparer<Employee>
{
public override bool Equals(Employee x, Employee y)

{
return EqualityComparer<Employee>.Default.Equals(x, v);

public override int GetHashCode(Employee obj)
{
return EqualityComparer<Employee>.Default.
GetHashCode(obj);

}

The Default property examines the type argument, T. If the type imple-
ments IEquatable<T>, then Default returns an IEquality-
Comparer<T> that uses the generic interface. If not, Default returns an
IEqualityComparer<T> that uses the System.Object virtual methods
Equals()andGetHashCode().hlﬂﬁswa%EqualityComparer<T>guab
antees the best implementation for you.

These methods illustrate one essential fact to remember about generic
types: The more fundamental the algorithm, such as equality, the more
likely it is that you will want a generic type definition. When you create
fundamental algorithms that have several variations, you’ll want the
compile-time checking you get with generic type definitions.



