TRiNG B R BFIZ1TT M B HREARN o
Wesley

r

 More Effective ©

S HCHRFINS0 ik
(HE3CMR)

[2£] Bill Wagner #

N B H i R AL

7 POSTS & TELECOM PRESS

MM EREFtit vy R

More Effective C#

B CHRAFING O HL K
(SE30%)

[¥£] Bill Wagner & ™

N o
it =

EHEERSRE (CIP) #iE

More Effective C#: 2 C# BRFEH 50 MR pE =
More Effective C#: 50 Specific Ways to Improve
Your C#: JEIL/ () AR (Wagner, B.) % —dt

A AREREHARFE, 2009.11

(B RBEFEITA)

ISBN 978-7-115-21510-9

L. OM- NI.QH- . OCIEE -BFRH-%
3 N.@®TP312

AR A P P CIPBUR A (2009) 51718985

mAERE

AHEEXT C# 2.0 F1 3.0 PIRMAF RS 0 T ok C# B8 H0 50 ZaofaEsy, &
FEEMF TIZEEAR, XL C#2.0 3.0 PREHISHMNET . S HRENNE
BHFTHA, Hp BB MG E AT R, M T ERERE, 4
W I

AEEEKER NET FEARFE.

BRI R A1
More Effective C#: MECHERF S0 B (R3ThR)

¢ E [32] Bill Wagner
HERE AEa
¢ AREPESALIEIREST RTEXK Y BEE14E
HB4" 100061 TR 315@ptpress.com.cn
it hitp://www.ptpress.com.cn
B IE K ENRIA BR A 5] B
¢ FFZA: 800X1000 1/16

EN3é: 19.25
¥ 310TF 20094E N A& 155
EP¥L: 1-3 000/ 20094 11 H4LTTEE 1 RERR

EFEERERBRICS EF: 01-2009-5717%
ISBN 978-7-115-21510-9
_ EYr: 55.007C
EEREAL: (010)51095186 EDEFRBALE: (010067129223
R#i#e: (010)67171154

Wt B = B

Original edition, entitled More Effective C#: 50 Specific Ways to Improve Your
C#, 978-0-321-48589-2 by Bill Wagner, published by Pearson Education, Inc.,
publishing as Addison Wesley, Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage retrieval system, without permission from
Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD. and POSTS
& TELECOM PRESS Copyright © 2009,

This edition is manufactured in the People’s Republic of China, and is
authorized for sale only in the People’s Republic of China excluding Hong Kong,
Macao and Taiwan.

A SCR H Pearson Education Asia Ltd. AU R MEHL H Akt ah 28 H Al
KM REBEFT, AMEUMEAFRERSDER AR

IR T A RILFEEN (B, BITSITERE M &S XERSND
HERTT.

A+ HEINGA Pearson Education (WAE¥HE HIMERD) BOLBitHRE, X
WEEABHE.

JRATA, R

XA H) HE

“EERE—RUUT, BRT C#3.0 PREFNAMBAE. SRAUNE
TR, AR T XREMAEE, ihREE IR ES T LBRRRNIES
FREVEREE, B LINQ. ZRUREARE., HRMLEEMHH CHiEs
KBFF, BARBRUATDH,”

—Bill Craun, Ambassador Solutions 23] % /& & #4))7

“EHENE T —MEVREEB I Bill Wagner 38 8%, THEMHLS. Bill 78
FHPFEMRR T HAE C# ERIEE, B TREGETEAESEI, ES5
B Visual CH HFREE¥T . AP BEEBESTHR CHIBEL, Tig
HEHESRMEHA CiES.”

—Peter Ritchie, %4k /48] MVP: Visual C#

“Z= 1572 Bill Wagner Bi—A& MR LEIE. HPXF C# 3.0 A1 LINQ 4+
HAEH Rag! 7
Tomas Restrepo, f#%k 28] MVP: Visual C++, NET #v Biztalk Server

“ME CH BT, ROE BREGILRA P EB A5 ETE. &8
MRABISh. ERIFHERSEENRBMRARINE S THER, ABEMET
—RIVEEARNEN. SREEEEZE, 2RIAHBH T —&5Mr
BRI, 3 T AR LA TR T A O TR . BARIRAT LR
EREHREREAN KB, BARIPREIUREERS B ZBOREIT S
—ERTH I ARG XEEARE AR, T RN RALSIHR B F%ST
C# REN KM S R FfEBL. ”

—Mads Torgersen, #4k/3] Visual C# i B 222

“Bill Wagner 2§ C# FF R AREE T —AREALHESE, HPNMETK
B C# LR ARFERSL T ME CH R P EEMA . RATARE M
i c#, R BIfT A ARBA IR BRI, 1ERITE B, 4
WA C# TF R TR BT, AR A BA AT A BB E H: Bill Wagner B9iX A BELF T .
Bill EHEHE. B, ERAREMETT. HAEHXA 2 g Uy B ER
BT, BARAKERKRMITERR.”
Charlie Calvert, f#4k2>3] Visual C# 4L X R B 238

H M Anders Hejlsberg 7£ 2005 45 & b FF & & K4 b8 — K R LINQ
(Language-Integrated Query, &5 £BAW) LI, C# Hif2 it Ayt tisk
7. LINQ WA CHIBFWR TN AERNFE: VEFE. B
BRAR B AIHMENT. lambda RIXARX . BERARE. XNRVGHMBURESVIE
feds. C#2.0 % LINQ RHIZRAT T TIREEMERE, BN TAFBZA. A%,
EAK, MERM, RUVRSNRUREZZLEH 6. HEEEE
LINQ MfE ST, XEEFTREOARBESTFIA—HERFHREIER
BRI RS . .

A AEFXF C# 2.0 71 C# 3.0 HES MBI FF A T X ANEN, B
THIRE) EAE A Effective CH: 50 Specific Ways to Improve Your C# (Addison-
Wesley, 2004) FEARB|WRERIFE. A4 PH%H ERE XL IEAMEA
C#3.0 MEBFHRTFRAR . HHEENF TEZEBEA, X C#2.0 A C#3.0
HAREZFRENEA. A BHEARFERBESHHRASEX, WERHE
B RCE TR DA SRR (R RIDR S HE SR H B9

5 Effective Software Development W HALE B—KE, AHPpEN
S HBEDE B —&, #3HEH C# R EMEERE . XA HEEH
BOREAB AR I C# 1.x YT C# 3.0,

PRRECH#3.0 PEIEFFENEM. BRAREZ1ERXIINETER,
BREERZRABEARBEILFEANF B PHAT E K —845. ERETE
F2ZhE, RELBRIFER LZRLIRITHE (metaprogramming) HBEE .

LR, ABPHRR—FRS R IBE RIS T i C# 3.0 LUK LINQ
HMIEE. AUAERESEEAAEREIERE L, C# 3.0 il REiE
EFEUSEEER. EE EROSEERELR, LINQ XA IREENEER
H, BM#HEFELIINEHTNSE. LINQ I C# 3.0 BHRAFMIRES C#
B, MARBNSEX AT EE PR .

EE POF]

ABR AR C# HITHRAF BRI E LT REARFTREN. ~HR
EWRCH CH20FICH3.08 T —ER TH#H. Scott Meyers & i, Effective

2 | %

i

RINBBRZAERN T REA RS E—EEEI WA SR . Bk, &35
HEBHEZEN B KBS PR, T % 5 R] 33 S 4 o
B EEF RS RESED], MEHZIET & i X SedmiE 2 /i,
VAR findnr i 5 1R A BT 3 B A [P R

BT X C# BT HRF A —E T2, YRENZST4 R, NET Framework
HEEHAFF T, BFE NET CLR (Common Language Runtime). .NET
BCL (Base Class Library) LA} JIT (Just In Time) 4iF#5%. A HIHF A
WK NET 3.0 444, #I41 WCF (Windows Communication Foundation). WPF
(Windows Presentation Foundation) LA WF (Windows Workflow Foundation)
%, AdEFPNANEMHERSAERF LRSI EE R HAMA NET
Framework ZH{%.

RENE

ZRIZE C# 1.1 LIRFTE CHETHUIEMER. F1EHENMATI
o] iz AR, System. Object FMIRAGERFIHEHE, PGt T —HEREME, €
/AR, ZRMRE. FEARULMEREEE. HPNBRILRREARER
i Az AR WM bRk H R R A .

ZRAeBEELEL R, REHHEIMNZOCBERBREMEEN. XWHRE
RES CH R ARBTFEN C# ZRABHRERELBNHEMR. NE—EN
BEARLHEMRER LR, 5 2 ERRENIBSX R R ELENMARE
FFE BrEs Bl

FBIFENFTUMMH CHIBEFTZAEHMNRIT. HPEAFERHCHIESR
WA BE MBIk WOR2 B an e R RER SRR, i alg A ik n,
AR el e B A SR8 O R B FE S uE I R IIR AL .

5 4 TAHE T AfAfEBh C# 3.0 MiE SR RMBIRRE T RBIWEME, &
EWfa AT B ERSERAMELIL, WA RHAER c# A, LU
EHEALXRENE.

FSENFT LINQ AEHEMIEE, ST HFRWMMEERCETH
SR FERANF S, TR ABEMEBEIRN (URTENE_EZE#
T8, URIAETRES—E (scalar value) BfALFEEIE,

86 ENE T WTE LI, MHATERE, DREFHAKASHE
WA R F N .

OIS

FHPHHHRARBAR RIS, MENMBRGAE, HEEL
WHBRE. EAERET, TEAFRRERY T ENEREERNES, flm

#

w

AllocateExpensiveResource () . XHRICTE B0 ES 0 (0HG B O B 4R
BEHFREME L, AW AR RS, FEEKT RSN, g
FREER I T BRI AE .

TR R AW, BBRSIAT I FargssHE:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

HREAR T HMM S R FRRE, REELRRh B RE Heg 2.,

FEABRIET 3 T, RERTREHETH C# 2.0 71 C# 3.0 FFHEE, B
X SFIREIFARLTHN . 7P 4 EME 5 2h, NERRELBET 3.0
e .

= ANE)

RELTFHERISAS, EEREHHERE TR, Hd s THRem
A bill. wagner@srtsolutions.com. Z<FH#1RKE % 7 Z http://srtsolutions.com/
blogs/MoreEffectiveCSharp 2 .

Hrigt

B, —fRFEREREE—FBZENEE. REE—FRUEGT
— ARG R RS . RESBTHERMER, HEmSSdiRm
ZHIRBR. SEIMRARE=H—, THE—ABTEREANLREE S,
X \FE 15 BT .

7E 2004 “F#E Effective CH I, RIBFEFEM N Effective Sofiware Develop-
ment ABH)—ZEE . REXF Y R KR CH1EETILE) More Effective C# 4%
SERNBEAEFR—R, WELRZEER. BEAHSHHBEETFTRE 2005
1) PDC K4 E 5 Curt Johnson Fl Joan Murray #) — 5 #5428, ABEBT T %
Hejlsberg F1H At C# HIBA B AN BIHREER . MIBET FFLh, REbIF 14
RIE CHIES L, IMFEREX BN C# R EHREENR .

R, ARERAIFMBESHRTHAXEHFENENZR, 8%
BEIEBE AR X ETIRE, HFS5EE. B URRHHEAIT &ZEITE
SHARMERAFR. EFEEZZE, REEXARBEEELET.

REFZEHE - XMENBEARFLEML. MITMBNBEFWEE, &
WA MR, FPkE T RBER S U AEZL4ER . Bill Craun, Wes Dyer,
Nick Paldino. Tomas Restrepo #/l Peter Ritchie #BEML T I ARRBER,
1A HEMSEA . Pavin Podila K T A58 WPF #8453, R T HIE#H:.

EBGEMSRS, X UK C# FRANMRAITETRESEE. &

4

|
| AT

nu‘-

B NET JF&4. KWK NET BIA4. k25X, P NET
P HMIERE NET AT R AB RS TABS MR EHW RS R
#. S, CodeMash B L H MBRIE T A4 BHES. %9 Dustin
Campbell. Jay Wren il Mike Woelmer, i i1 #1 3 i1 T 18 £ 48 . Mads
Torgersen. Charlie Calvert #l Eric Lippert th & #HRBE T A B PHHLLH.
HES—REE, Charlie Calvert HRE % TR EAH S S E
BHEREXF . HEREHXEGHE, A K EEXEEWS T, BWgks
EIREEENHS.

MKBIBBWIRZ I T Scott Meyers (I SEBHRBBEZ/E, RTLIHAER
HEHMBETHE—AF. Scott Meyers BARE C# LK, (BB FRAFINE B
FEMANEAFIEREE MR A BRERERIEEE, B—REfA
WAET: TR B, (HXFE T BRENEE .

AR AN EET, Joan Murray IERI AT, VEN 458, b
SREHREIFTEN Y. ARFEUNENMZS HIER, I RRIKEY
HEE, FHPHRIEA BB N AN, HRER. HARBERTEDRE.
A Curt Johnson , fiifi1ik#5 Addison-Wesley H: hRit f-&VEIE 2 vt .

5 —H R 5 FHREMEE . Betsy Hardinger £ Bl TREIT S H ik
BCFRER T AWM BEEE, MHFREREREAR R, EihgE
Za, A PMESTEEMNTRG.

4R, BEE B OEARKRANE . 755X BEE S, Dianne Marsh (SRT
Solutions 1 5 — A A) ILAFRRFEREHE. MERHHENKE T
KRB, EREREN, REEROFELIINES. BERKBRESS
Marlene. Lara. Sarah fl Scott, BREMRMTHIRE S ZIHRAGBA .

Contents

Chapter 1 Working with Generics

Chapter 2

Chapter 3

Item 1:
Item 2:
Item 3:
Item 4:
Item 5:

Item 6:
Item 7:

Item 8:

Item 9:
Item 10:

Use Generic Replacements of 1.x Framework API Classes
Define Constraints That Are Minimal and Sufficient
Specialize Generic Algorithms Using Runtime Type Checking
Use Generics to Force Compile-Time Type Inference

Ensure That Your Generic Classes Support Disposable
Type Parameters

Use Delegates to Define Method Constraints on Type Parameters

Do Not Create Generic Specialization on Base Classes
or Interfaces

Prefer Generic Methods Unless Type Parameters Are

Instance Fields

Prefer Generic Tuples to Qutput and Ref Parameters
Implement Classic Interfaces in Addition to Generic Interfaces

Multithreading in C#

Item 11:
Item 12:
Item 13:
Item 14:
Item 15:
Item 16:

Use the Thread Pool Instead of Creating Threads

Use BackgroundWorker for Cross-Thread Communication
Use lock() as Your First Choice for Synchronization

Use the Smallest Possible Scope for Lock Handles

Avoid Calling Unknown Code in Locked Sections
Understand Cross-Thread Calls in Windows Forms and WPE

C# Design Practices

Item 17:
Item 18:
Ttem 19:
Item 20:
Item 21:
Item 22:
Item 23:

Item 24:

Create Composable APIs for Sequences

Decouple Iterations from Actions, Predicates, and Functions
Generate Sequence Items as Requested

Loosen Coupling by Using Function Parameters

Create Method Groups That Are Clear, Minimal, and Complete
Prefer Defining Methods to Overloading Operators
Understand How Events Increase Runtime Coupling

Among Objects

Declare Only Nonvirtual Events

32
36

42

46
50
56

63
67

74
78
86
90
93

105
105
112
117
120
127
134

137
139

2 | Contents

Chapter 4

Chapter 5

Chapter 6

Item 25: Use Exceptions to Report Method Contract Failures
Item 26: Ensure That Properties Behave Like Data
Item 27: Distinguish Between Inheritance and Composition

C# 3.0 Language Enhancements
Item 28: Augment Minimal Interface Contracts with
Extension Methods

Item 29: Enhance Constructed Types with Extension Methods
Itern 30: Prefer Implicitly Typed Local Variables

Item 31: Limit Type Scope by Using Anonymous Types

Item 32: Create Composable APIs for External Components
Item 33: Avoid Modifying Bound Variables

Item 34: Define Local Functions on Anonymous Types

Item 35: Never Overload Extension Methods

Working with LINQ
Item 36: Understand How Query Expressions Map to Method Calls

Item 37: Prefer Lazy Evaluation Queries

Item 38: Prefer Lambda Expressions to Methods

Item 39: Avoid Throwing Exceptions in Functions and Actions
Item 40: Distinguish Early from Deferred Execution

Item 41: Avoid Capturing Expensive Resources

Item 42: Distinguish Between IEnumerable and IQueryable
Data Sources

Item 43: Use Single() and First() to Enforce Semantic Expectations
on Queries
Item 44: Prefer Storing Expression<> to Func<>

Miscellaneous

Item 45: Minimize the Visibility of Nullable Values

Item 46: Give Partial Classes Partial Methods for Constructors,
Mutators, and Event Handlers

Item 47: Limit Array Parameters to Params Arrays

Item 48: Avoid Calling Virtual Functions in Constructors

Item 49: Consider Weak References for Large Objects

Item 50: Prefer Implicit Properties for Mutable, Nonserializable Data

Index

146
150
156

163

163
167
169
176
180
185
191
196

201
201
213
218
222
225
229

242

247
249

255
255

261
266
271
274
277

283

1, Working with Generics

Without a doubt, C# 2.0 added a feature that continues to have a big
impact on how you write C# code: generics. Many articles and papers have
been written about the advantages of using generics over the previous ver-
sions of the C# collections classes, and those articles are correct. You gain
compile-time type safety and improve your applications’ performance by
using generic types rather than weakly typed collections that rely on
System.Object.

Some articles and papers might lead you to believe that generics are use-
ful only in the context of collections. That’s not true. There are many other
ways to use generics. You can use them to create interfaces, event handlers,
common algorithms, and more.

Many other discussions compare C# generics to C++ templates, usually
to advocate one as better than the other. Comparing C# generics to C++
templates is useful to help you understand the syntax, but that’s where the
comparison should end. Certain idioms are more natural to C++ tem-
plates, and others are more natural to C# generics. But, as you'll see in Item
2 abit later in this chapter, trying to decide which is “better” will only hurt
your understanding of both of them. Adding generics required changes to
the C# compiler, the Just In Time (JIT) compiler, and the Common Lan-
guage Runtime (CLR). The C# compiler takes your C# code and creates the
Microsoft Intermediate Language (MSIL, or IL) definition for the generic
type. In contrast, the JIT compiler combines a generic type definition with
a set of type parameters to create a closed generic type. The CLR supports
both those concepts at runtime. :

There are costs and benefits associated with generic type definitions.
Sometimes, replacing specific code with a generic equivalent makes your
program smaller. At other times, it makes it larger. Whether or not you
encounter this generic code bloat depends on the specific type parameters
you use and the number of closed generic types you create.

Generic class definitions are fully compiled MSIL types. The code they
contain must be completely valid for any type parameters that satisfy the

2 Chapter 1 Working with Generics

constraints. The generic definition is called a generic type definition. A
specific instance of a generic type, in which all the type parameters have
been specified, is called a closed generic type. (If only some of the param-
eters are specified, it’s called an open generic type.)

Generics in IL are a partial definition of a real type. The IL contains the
placeholder for an instantiation of a specific completed generic type. The
JIT compiler completes that definition when it creates the machine code
to instantiate a closed generic type at runtime. This practice introduces a
tradeoff between paying the increased code cost for multiple closed generic
types and gaining the decreased time and space required in order to store
data.

Different closed generic types may or may not produce different runtime

_representations of the code. When you create multiple closed generic types,
the JIT compiler and the CLR perform some optimizations to minimize
the memory pressure. Assemblies, in IL form, are loaded into data pages.
As the JIT compiler translates the IL into machine instructions, the result-
ing machine code is stored in read-only code pages.

This process happens for every type you create, generic or not. With non-
generic types, there is a 1:1 correspondence between the IL for a class and
the machine code created. Generics introduce some new wrinkles to that
translation. When a generic class is JIT-compiled, the JIT compiler exam-
ines the type parameters and emits specific instructions depending on the
type parameters. The JIT compiler performs a number of optimizations to
fold different type parameters into the same machine code. First and fore-
most, the JIT compiler creates one machine version of a generic class for
all reference types.

All these instantiations share the same code at runtime:

List <string> stringlist = new List<string>();
List<Stream> OpenFiles = new List<Stream>();
List<MyClassType> anotherlList = new List<MyClassType>();

The C# compiler enforces type safety at compile time, and the JIT compiler
can produce a more optimized version of the machine code by assuming
that the types are correct.

Different rules apply to closed generic types that have at least one value
type used as a type parameter. The JIT compiler creates a different set of
machine instructions for different type parameters. Therefore, the fol-
lowing three closed generic types have different machine code pages:

Working with Generics |3

List<double> doublelList = new List<double>();
List<int> markers = new List<int>();
List<MyStruct> values = new List<MyStruct>();

This may be interesting, but why should you care? Generic types that will
be used with multiple different reference types do not affect the memory
footprint. All JIT-compiled code is shared. However, when closed generic
types contain value types as parameters, that JIT-compiled code is not shared.
Let’s dig a little deeper into that process to see how it will be affected.

When the runtime needs to JIT-compile a generic definition (either a
method or a class) and at least one of the type parameters is a value type,
it goes through a two-step process. First, it creates a new IL class that rep-
resents the closed generic type. I'm simplifying, but essentially the run-
time replaces T with int, or the appropriate value type, in all locations in
the generic definition. After that replacement, it JIT-compiles the necessary
code into x86 instructions. This two-step process is necessary because the
JIT compiler does not create the x86 code for an entire class when loaded;
instead, each method is JIT-compiled only when first called. Therefore, it
makes sense to do a block substitution in the IL and then JIT-compile the
resulting IL on demand, as is done with normal class definitions.

This means that the runtime costs of memory footprint add up in this
way: one extra copy of the IL definition for each closed generic type that
uses a value type, and a second extra copy of machine code for each
method called in each different value type parameter used in a closed

generic type.

There is, however, a plus side to using generics with value type parameters:
You avoid all boxing and unboxing of value types, thereby reducing the
size of both code and data for value types. Furthermore, type safety is
ensured by the compiler; thus, fewer runtime checks are needed, and that
reduces the size of the codebase and improves performance. Furthermore,
as discussed in Item 8, creating generic methods instead of generic classes
can limit the amount of extra IL code created for each separate instantia-
tion. Only those methods actually referenced will be instantiated. Generic
methods defined in a nongeneric class are not JIT-compiled.

This chapter discusses many of the ways you can use generics and explains
how to create generic types and methods that will save you time and help
you create usable components. I also cover when and how to migrate .NET
1.x types (in which you use System.0Object) to .NET 2.0 types, in which
you specify type parameters.

4 | Chapter 1 Working with Generics

Item 1: Use Generic Replacements of 1.x Framework API Classes

The first two releases of the .NET platform did not support generics. Your
only choice was to code against System.Object and add appropriate run-
time checks to ensure that the runtime type of the object was what you
expected, usually a specific type derived from System.Object. This prac-
tice was even more widespread in the .NET Framework, because the
framework designers were creating a library of lower-level components
that would be used by everyone.

System.Object is the ultimate base class for every type you or anyone
else creates. That led to the obvious decision to use System.Object as a
substitute for “whatever type you want to use in this space.” Unfortunately,
that’s all the compiler knows about your types. This means that you must
code everything very defensively—and so must everyone who uses your
types. Whenever you have System.Object as a parameter or a return type,
you have the potential to substitute the wrong type. That’s a cause for run-
time errors in your code.

With the addition of generics, those days are gone. If you've been using .NET
for any period of time, you’ve probably adopted the habit of using many
classes and interfaces that now should be cast aside in favor of an updated
generic version. You can improve the quality of your code by replacing
System.Object with generic type parameters. Why? It’s because it’s much
harder to misuse generic types by supplying arguments of the wrong type.

If correctness isn’t enough to motivate you to replace your old Sys-
tem.Object code with generic equivalents, maybe performance will get
you interested. NET 1.1 forced you to use the ultimate base class of Sys-
tem.Object and dynamically cast objects to the expected type before
using them. The 1.1 versions of any class or interface require that you box
and unbox value types every time you coerce between the value type and
the System.Object type. Depending on your usage, that requirement may
have a significant impact on performance. Of course, it applies only with
value types. But, as I said earlier, the weakly typed systems from the 1.1
days require both you and your users to author defensive code to test the
runtime type of your parameters and return types. Even when that code
functions correctly, it adds runtime performance costs. And it’s worse
when it fails; the runtime costs probably include stack walks and unwind-
ing when casts throw exceptions and the runtime searches for the proper
catch clause. You run the risk of everything from costly application slow-
down to abnormal application termination.

ltem 1: Use Generic Replacements of 1.x Framework AP Classes | 5

A good look at the .NET Framework 2.0 shows you how much you can
transform your code by using generics. The obvious starting point is the
System.Collections.Generics namespace, followed by the System.Col-
lections.ObjectModel namespace. Every class that is part of the Sys-
tem.Collections namespace has a new, improved counterpart in
System.Collections.Generics. For example, ArrayList has been
superseded by List<T>, Stack has been replaced by stack<Ts,
Hashtable has been replaced by Dictionary<k, V>, and Queue has been
replaced by Queue<T>. In addition, there are a few new collections, such as
SortedList<T> and LinkedList<T>.

The addition of these classes meant the addition of generic interfaces.
Again, the System.Collections.Generics namespace points to the
obvious examples. The original IList interface has been extended with
IList<T>. All the collections-based interfaces have been similarly
upgraded: IDictionary<K, V> replaces IDictionary, TEnumerable<T>
extends TEnumerable, IComparer<T> replaces IComparer, and ICol-
lection<T> replaces ICollection.

I say “extends” and “replaces” deliberately. Many of the generic interfaces
derive from their nongeneric counterparts, extending the classic capabil-
ity with upgraded, type-specific versions. Other classic interfaces are not
part of the signature of the newer interfaces. For a variety of reasons, the
newer interface method signatures aren’t consistent with the classic inter-
faces. When that happened, the framework designers chose not to tie the
new interface definitions to an outdated interface.

The .NET 2.0 Framework has added an IEquatable<T> interface to min-
imize the potential errors involved in overriding System.Object .Equals:

public interface IEquatable<T>
{
bool Equals(T other);

}

You should add support for this interface wherever you would have over-
written System.Object .Equals.

If you need to perform comparisons on a type defined in another library,
the .NET 2.0 Framework has also added a new equality interface in the
generic collections namespace: IEqualityComparer<T>. This interface
has two methods: Equals and GetHashCode.

6 | Chapter 1 Working with Generics

public interface IEqualityComparer<T>
{

int Equals(T x, T y);

int GetHashCode(T obj);
¥

You can create a helper class that implements TEqualityComparer<T>
for any third-party type you use today. This class works like any class that
implements the 1.1 version of THashCodeProvider. It enables you to cre-
ate type-safe equality comparisons for your types, deprecating the old ver-
sions based on System.Object. You'll almost never need to write a full
implementation of IEqualityComparer<T> yourself. Instead, you can use
the EqualityComparer<T> class and its Default property. For example,
you would write the following EmployeeComparer class, derived from
EqualityComparer<T>, to test the equality of Employee objects created
in another library:

public class EmployeeComparer : EqualityComparer<Employee>
{
public override bool Equals(Employee x, Employee y)

{
return EqualityComparer<Employee>.Default.Equals(x, v);

public override int GetHashCode(Employee obj)
{
return EqualityComparer<Employee>.Default.
GetHashCode(obj);

}

The Default property examines the type argument, T. If the type imple-
ments IEquatable<T>, then Default returns an IEquality-
Comparer<T> that uses the generic interface. If not, Default returns an
IEqualityComparer<T> that uses the System.Object virtual methods
Equals()andGetHashCode().hlﬂﬁswa%EqualityComparer<T>guab
antees the best implementation for you.

These methods illustrate one essential fact to remember about generic
types: The more fundamental the algorithm, such as equality, the more
likely it is that you will want a generic type definition. When you create
fundamental algorithms that have several variations, you’ll want the
compile-time checking you get with generic type definitions.

