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Preface

This book is first of all designed as a text for the course usually called
“theory of functions of a real variable”. This course is at present cus-
tomarily offered as a first or second year graduate course in United
States universities, although there are signs that this sort of analysis
will soon penetrate upper division undergraduate curricula. We have
included every topic that we think essential for the training of analysts,
and we have also gone down a number of interesting bypaths. We hope
too that the book will be useful as a reference for mature mathematicians
and other scientific workers. Hence we have presented very general and
complete versions of a number of important theorems and constructions.
Since these sophisticated versions may be difficult for the beginner, we
have given elementary avatars of all important theorems, with appro-
priate suggestions for skipping. We have given complete definitions, ex-
planations, and proofs throughout, so that the book should be usable
for individual study as well as for a course text.

Prerequisites for reading the book are the following. The reader is
assumed to know elementary analysis as the subject is set forth, for
example, in Tou M. ApostoL’s Mathematical Analysis [Addison-Wesley
Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of Mathe-
matical Analysis [27 Ed., McGraw-Hill Book Co., New York, 1964].
There are no other prerequisites for reading the book: we define practi-
cally everything else that we use. Some prior acquaintance with abstract
algebra may be helpful. The text A4 Survey of Modern Algebra, by GARRETT
BIRKHOFF and SAUNDERS MAc LANE [37¢ Ed., MacMillan Co., New York,
1965] contains far more than the reader of this book needs from the
field of algebra.

Modern analysis draws on at least five disciplines. First, to explore
measure theory, and even the structure of the real number system, one
must use powerful machinery from the abstract theory of sets. Second,
as hinted above, algebraic ideas and techniques are illuminating and
sometimes essential in studying problems in analysis. Third, set-theoretic
topology is needed in constructing and studying measures. Fourth, the
theory of topological linear spaces [“functional analysis’’] can often be
applied to obtain fundamental results in analysis, with surprisingly little
effort. Finally, analysis really is analysis. We think that handling ine-
qualities, computing with actual functions, and obtaining actual num-
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bers, is indispensable to the training of every mathematician. All five of
these subjects thus find a place in our book. To make the book useful
to probabilists, statisticians, physicists, chemists, and engineers, we have
included many “‘applied” topics: Hermite functions; Fourier series and
integrals, including PLANCHEREL'S theorem and pointwise summability;
the strong law of large numbers; a thorough discussion of complex-
valued measures on the line. Such applications of the abstract theory
are also vital to the pure mathematician who wants to know where his
subject came from and also where it may be going.

With only a few exceptions, everything in the book has been taught
by at least one of us at least once in our real variables courses, at the
Universities of Oregon and Washington. As it stands, however, the book
is undoubtedly too long to be covered in fofo in a one-year course. We
offer the following road map for the instructor or individual reader who
wants to get to the center of the subject without pursuing byways, even
interesting ones.

Chapter One. Sections 1 and 2 should be read to establish our
notation. Sections 3, 4, and 5 can be omitted or assigned as outside
reading. What is essential is that the reader should have facility in the
use of cardinal numbers, well ordering, and the real and complex number
fields.

Chapter Two. Section 6 is of course important, but a lecturer should
not succumb to the temptation of spending too much time over it. Many
students using this text will have already learned, or will be in the
process of learning, the elements of topology elsewhere. Readers who
are genuinely pressed for time may omit § 6 and throughout the rest of
the book replace ‘““locally compact Hausdorff space’” by ‘“real line”’, and
‘“‘compact Hausdorff space”” by “closed bounded subset of the real line”.
We do not recommend this, but it should at least shorten the reading.
We urge everyone to cover § 7 in detail, except possibly for the exercises.

Chapter Three. This chapter is the heart of the book and must be
studied carefully. Few, if any, omissions appear possible. Chapter Three
is essential for all that follows, barring § 14 and most of § 16.

After Chapter Three has been completed, several options are open.
One can go directly to § 21 for a study of product measures and FuBint's
theorem. [The applications of FUBINI'S theorem in (21.32) ¢l seq. require
parts of §§ 13—18, however.] Also §§ 17—18 can be studied immediately
after Chapter Three. Finally, of course, one can read §§ 13—22 in order.

Chapter Four. Section 13 should be studied by all readers. Subheads
(13.40)—(13.51) are not used in the sequel, and can be omitted if neces-
sary. Section 14 can also be omitted. [While it is called upon later in
the text, it is not essential for our main theorems.] We believe never-
theless that § 14 is valuable for its own sake as a basic part of functional
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analysis. Section 15, which is an exercise in classical analysis, should be
read by everyone who can possibly find the time. We use Theorem
(15.11) in our proof of the LEBESGUE-RADON-NIKODYM theorem [§ 19],
but as the reader will see, one can get by with much less. Readers who
skip § 15 must read § 16 in order to understand § 19.

Chapter Five. Sections 17 and 18 should be studied in detail. They
are parts of classical analysis that every student should learn. Of § 19,
only subheads (19.1)—(19.24) and (19.35)—(19.44) are really essential. Of
§ 20, (20.1)—(20.8) should be studied by all readers. The remainder of
§20, while interesting, is peripheral. Note, however, that subheads
(20.55)—(20.59) are needed in the refined study of infinite product
measures presented in § 22.

Chapter Six. Everyone should read (21.1)—(21.27) at the very least.
We hope that most readers will find time to read our presentation of
PLANCHEREL'S theorem (21.31)—(21.53) and of the HARDY-LITTLEWOOD
maximal theorems (21.74)—(21.88). Section 22 is optional. It is essential
for all students of probability and in our opinion, its results are extremely
elegant. However, it can be sacrificed if necessary.

Occasionally we use phrases like “obvious on a little thought”, or
“a moment’s reflection shows. ..”. Such phrases mean really that the
proof is not hard but is clumsy to write out, and we think that more
writing would only confuse the matter. We offer a very large number of
exercises, ranging in difficulty from trivial to all but impossible. The
harder exercises are supplied with hints. Heroic readers may of course
ignore the hints, although we think that every reader will be grateful
for some of them. Diligent work on a fairly large number of exercises is
vital for a genuine mastery of the book: exercises are to a mathematician
what CZERNY is to a pianist.

We owe a great debt to many friends. Prof. KENNETH A. Ross has
read the entire manuscript, pruned many a prolix proof, and uncovered
myriad mistakes. Mr. LEE W. ERLEBACH has read most of the text and
has given us useful suggestions from the student’s point of view. Prof.
KEiTH L. PriLLips compiled the class notes that are the skeleton of the
book, has generously assisted in preparing the typescript for the printer,
and has written the present version of (21.74)—(21.83). Valuable con-
versations and suggestions have been offered by Professors ROBERT M.
BLUMENTHAL, IRVING GLICKSBERG, WiLLIAM H. SiLLs, DONALD R.TRUAX,
BERTRAM YoOD, and HERBERT S. ZUCKERMAN. Miss BERTHA THOMPSON
has checked the references. The Computing Center of the University
of Oregon and in particular Mr. JaMEs H. BJERRING have generously
aided in preparing the index. We are indebted to the several hundred
students who have attended our courses on this subject and who have
suffered, not always in silence, through awkward presentations. We
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are deeply grateful to Mrs. SHANTI THAYIL, who has typed the entire
manuscript with real artistry.

Our thanks are also due to the Universities of Oregon and Washington
for exemption from other duties and for financial assistance in the pre-
paration of the manuscript. It is a pleasure to acknowledge the great
help given us by Springer-Verlag, in their rapid and meticulous publica-
tion of the work.

Seattle, Washington EopwiN HEwITT

Eugene, Oregon KARL R. STROMBERG
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CHAPTER ONE
Set Theory and Algebra

From the logician’s point of view, mathematics is the theory of sets
and its consequences. For the analyst, sets and concepts immediately
definable from sets are essential tools, and manipulation of sets is an
operation he must carry out continually. Accordingly we begin with two
sections on sets and functions, containing few proofs, and intended largely
to fix notation and terminology and to form a review for the reader in
need of one. Sections 3 and 4, on the axiom of choice and infinite arith-
metic, are more serious: they contain detailed proofs and are recommended
for close study by readers unfamiliar with their contents.

Plainly one cannot study real- and complex-valued functions seriously
without knowing what the real and complex number fields are. Therefore,
in § 5, we give a short but complete construction of these objects. This
section may be read, recalled from previous work, or taken on faith.

This text is #of rigorous in the sense of proceeding from the axioms
of set theory. We believe in sets, and we believe in the rational numbers.
Beyond that, we have tried to prove all we say.

§ 1. The algebra of sets

(1.1) The concept of a set. As remarked above, we take the notion of set
as being already known. Roughly speaking, a set [collection, assemblage,
aggregate, class, family] is any identifiable collection of objects of any
sort. We identify a set by stating what its members [elements, points]
are. The theory of sets has been described axiomatically in terms of the
notion “member of'’. To build the complete theory of sets from these
axioms is a long, difficult process, and it is remote from classical analysis,
which is the main subject of the present text. Therefore we shall make
no effort to be rigorous in dealing with the concept of sets, but will appeal
throughout to intuition and elementary logic. Rigorous treatments of the
theory of sets can be found in Nasve Set Theory by P. HaLMos [Princeton,
N. J.: D. Van Nostrand Co. 1960] and in Axiomatic Set Theory by
P. SuppEs [Princeton, N. J.: D. Van Nostrand Co. 1960].

(1.2) Notation. We will usually adhere to the following notational
conventions. Elements of sets will be denoted by small letters: a, b, c,
..u% 9y 2 a B, v ... Sets will be denoted by capital Roman letters:
4, B, C, ... Families of sets will be denoted by capital script letters:
o, B, €, ... Occasionally we need to consider collections of families of
sets. These entities will be denoted by capital Cyrillic letters: XK, 4, ...

1



2 Chapter 1. Set Theory and Algebra

A set is often defined by some property of its elements. We will write
{#: P(x)} [where P(x) is some proposition about x] to denote the set of
all x such that P(x) is true. We have done nothing here to sharpen the
definition of a set, since “‘property”” and “‘set’ are from one point of view
synonymous.

If the object x is an element of the set 4, we will write x € 4; while
x ¢ A will mean that x is not in 4.

We write & for the void [empty, vacuous] set; it has no members at
all. Thus @ = {x: % is a real number and x® < 0} = {x: x is a unicorn in
the Bronx Zoo}, and so on.

For any object x, {x} will denote the set whose only member is x.
Similarly, {x, %, . . ., %,,} will denote the set whose members are precisely
Xy, Xay - oy Xy

Throughout this text we will adhere to the following notations:
N will denote the set {1, 2, 3, . . .} of all positive integers; Z will denote
the set of all integers; Q will denote the set of all rational numbers;
R will denote the set of all real numbers; and K will denote the set of all
complex numbers. We assume a knowledge on the part of the reader of the
sets V, Z, and Q. The sets R and K are constructed in § 5.

(1.3) Definitions. Let A and B be sets such that for all x, x € 4
implies x € B. Then A is called a subset of B and we write A C B or
BDOA. If ACB and BC 4, then we write A = B; 4 + B denies
A= B.1f AC Band 4 + B, we say that 4 is a proper subset of B and
we write 4 & B. We note that under this idea of equality of sets, the void
set is unique, for if @, and 2, are any two void sets we have 2,C 2,
and 2,C 2,.

(1.4) Definitions. If A and B are sets, then we define 4 U B as the set
{x:x € A orx ¢ B}, and we call A U B the union of A and B. Let o/ bea
family of sets; then we define U &/ = {x: x € 4 for some 4 € &#}. Similarly
if {A.}.cs is a family of sets indexed by iota, we write ;ngx A,={x:2€A,

for some ¢ € I}. If I = N, the positive integers."éJ ) A, will usually be
- -} [ -]
written as"l;J ,An. Other notations, such as_ _Llw A,, are self-explanatory.

For given sets 4 and B, we define A N B as the set {x:x ¢4 and
x € B}, and we call 4 N B the intersection of A and B. If o is any family
of sets, we define N o = {x:x ¢ A forall 4 ¢ &}, if {4 },¢sis a family of
sets indexed by iota, then we write ‘QI A ={x:x €A, foralls €I} The
. \
notation ”Ql A, [and similar notations] have obvious meanings.
Example. If 4,= {x: % is a real number, |x| <-’l'—} ,n=1,223, ...,

then N 4,={0}.
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For a set A, the family of all subsets of A is a well-defined family of
sets which is known as the power set of A and is denoted by #(4). For
example, if 4 = {1, 2}, then #(4) = {2, {1}, {2}, {1, 2}}.

(1.5) Theorem. Let A, B, C be any sets. Then we have:

i) AUB=BUA; i ANB=BNA;

@) AUA=A4; (i) ANA=4;

(i) AU@=4; (iii") ANg=2;

(ivy AU(BUC) (iv") AN(BNC)
=(AUBUC; =(ANB)NC:

(v ACAUB; ) ANBCA;

(vi) A C Bif and only if (vi’) A C B if and only if
AUB=B; ANB=A.

The proof of this theorem is very simple and is left to the reader.

(1.6) Theorem.

i) ANBUC=ANBULUMANC)

i) AU(BNC)=(AUB)N(AUC).

Proof. These and similar identities may be verified schematically; the
verification of (i) follows:

(AN8) U (ANC)

Fig. 1

A similar schematic procedure could be applied to (ii). However, we may
use (i) and the previous laws as follows:

AUBNAUC=(AUB NAU({(4UB)NC)
=(ANA4A)UBNAUMANCOUBNC)=4AU(BNC()
UBNA)UANC)=4U(BNC);

the last equality holds because BN A CAandANCC 4. 0!

(1.7) Definition. If A N B = &, then 4 and B are said to be dssjoint.
If o/ is a family of sets such that each pair of distinct members of & are
disjoint, then & is said to be pasrwise disjosmt, Thus an indexed family
{4.}ic1 is pairwise disjoint if 4, 4,= & whenever ¢ % 7.

(1.8) Definition. In most of our ensuing discussions the sets in question

will be subsets of some fixed ‘‘universal” set X. Thus if 4 C X, we define

! The symbol [ will be used throughout the text to indicate the end of a proof.
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the complement of A [relative to X] to be the set {x:x € X, x ¢ A}. This
set is denoted by the symbol 4’. If there is any possible ambiguity as to
which set is the universal set, we will write X N A’ for 4’. Other common
notations for what we call 4’ are X — 4, X\ 4, X ~ A, CA, and 4¢;
we will use 4’ exclusively.

(1.9) Theorem [DE MoRGAN’s laws].

(i) (AU B)=4'NB';

(ii) (A N B)Y=A'U B';

(iii) (U A) = ‘Qr Al

(iv) (, n Ay=yY 4.

The proofs of these identities are easy and are left to the reader.

(1.10) Definition. For sets A and B, the symmetric difference of A and
Bistheset {x:x €A or x € Band x ¢ A N B}, and we write 4 A B for
this set. Note that 4 A B is the set consisting of those points which are
in exactly one of 4 and B, and that it may also be defined by 4 A B

= (A N B)U (4'N B). The symmetric difference
is sketched in Fig. 2
(1.11) Definition. Let X be a set and let #
g bea nonvoid family of subsets of X such that
(i) A, BER implies AUBER;
(ii) A, B €® implies AN B'¢R.
Then & is called a ring of sets. A ring of sets
closed under complementation [i.e. 4 € & implies
A’ € R] is called an algebra of sels.

(1.12) Remarks. A ring of sets is closed under the formation of finite
intersections; for, if A, B €, then (1.11.ii) applied twice shows that
ANB=AN(ANB)¢AR By (1.11i) and (1.11.ii), we have 4 A B
=(AUB)N (AN B)'¢&. Note also that z € since # is nonvoid.
Also Z is an algebra if and only if X €. There are rings of sets which
are not algebras of sets; e.g., the family of all finite subsets of N is a ring
of sets but not an algebra of sets.

(1.13) Definition. A g-ring [o-algebra] of sets is a ring [algebra)] of
sets & such that if {4,: #n € N} C &, then U 4,€4X.

Much of measure theory deals with families of sets which form ¢-rings
or g-algebras. There are g-rings which are not g-algebras, ¢.g., the family
of all countable subsets of an uncountable set. [For the definitions of
countable and uncountable, see § 4.]

(1.14) Remarks.! There are many axiomatic treatments of rings and
algebras of sets, and in fact some very curious entities can be interpreted

! This subhead is included only for its cultural interest and may be omitted by
anyone who is in a hurry.
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as rings or algebras of sets [see (1.25)]. Let B be any set. Suppose that
to each a € B there is assigned a unique element a* € B and that to each
pair of elements a, b € B there is assigned a unique element a V b ¢ B
such that these operations satisfy

(i) aVb=5Va,

(ii) aV(dVe)=(@aVd)Ve,

(iii) (a*V b*)*V (a*V b)*=a.

Sets B with operations V and * [or similar operations] and satisfying
axioms equivalent to (i) —(iii) were studied by many writers in the period
1890—1930. They bear the generic name Boolean algebras, after the
English mathematician GEORGE BooLe [1815—1864]. The axioms
(i) —(iii) were given by the U.S. mathematician E. V. HUNTINGTON
[1874—1952] [Trans. Amer. Math. Soc. 5, 288—309 (1904)].

The reader will observe that if &, b are interpreted as sets and V
and * as union and complementation, then (i) —(iii) are simple identities.
Other operations can be defined in a Boolean algebra, e.g., A [the analogue
of N for sets], which is defined by a A b = (a*V b*)*%. A great deal of
effort has been devoted to investigating abstract Boolean algebras. In the
1930’s, the contemporary U.S. mathematician M. H. STONE showed that
any Boolean algebra can be interpreted as an algebra of sets in the follow-
ing very precise way [Trans. Amer. Math. Soc. 40, 37—111 (1936)]. Given
any Boolean algebra B, there is a set X, an algebra & of subsets of X,
and a one-to-one mapping v of B onto & such that t(a*) = (z(a))’
[* becomes ‘] and z(a V b) = 7(a) U 7(b) [V becomes U]. Thus from the
point of view of studying the operations in a Boolean algebra, one may
as well study only algebras of sets.

STONE's treatment of the representation of Boolean algebras was
based on a slightly different entity, namely, a Boolean ring. A Boolean
ring is any ring S such that x* = x for each x € S. [For the definition of
ring, see (5.3).]

STONE showed that Boolean algebras and Boolean rings having a mul-
tiplicative unit can be identified, and then based his treatment on
Boolean rings. More precisely: for every Boolean ring S, there is a ring
of scts # and a one-to-one mapping v of S onto & such that

t(a 4 b) = 7(a) A t(b)
t(ad) =t(a) N T(d).

That is, addition in a Boolean ring corresponds to the symmetric differ-
ence, and multiplication to intersection.

Proofs of the above results and a lengthy treatment of Boolean al-
gebras and rings and of algebras and rings of sets can be found in
G. BIRKHOFF, Lattice Theory [Amer. Math. Soc. Colloquium Publications,
Vol. XXV, 2nd edition; Amer. Math. Soc., New York, N. Y., 1948].

and
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(1.15) Exercise. Simplify as much as possible:
@) (AU (BN CUWY);
G XuUNXuYyy;
AnNBNOUMA'NBNOUMANB NC)U(ANBNCY)
S vdnBnNc)uA'nBNCYUA'NB NC).
(1.16) Exercise [PorETsky]. Given two sets X and Y, prove that
X=gifandonlyif Y=XAY.

(1.17) Exercise. Describe in words the sets "91 (h D,.A ,,) a.nd”_f_\l (AL-J.A ,)

where {4,, 4;, ..., 4, ...} is any family of sets indexed by N. Also
prove that the first set is a subset of the second.

(1.18) Exercise. Prove:

@) AABAC)=(AABAC;

b)) AN(BAC=(ANBA{ANC);

() ANA=9;

d end=4.

(1.19) Exercise. Let {4,},e; and {B,},¢; be nonvoid families of sets.
Prove that

(i) (U4)A (U B)CU (4,AB).

Prove by an example that the inclusion may be proper. Can you assert
anything about (i) if the U’s are changed to N's?
(1.20) Exercise. For any sets 4, B, and C, prove that

AABC(AACIU(BACQ),

and show by an example that the inclusion may be proper.
(1.21) Exercise. Let {M,}3., and {N,}i., be families of sets such
that the sets NV, are pairwise disjoint. Define @, = M, and Q, =
”

M. NMU---UM,_,)forn=2,3,... Prove thatN,.AQ,,C‘L_Jl(N.AM,)

n=12..)).

(1.22) Exercise. Consider an alphabet with a finite number of letters,
say a, where a > 1. A word in this alphabet is a finite sequence of letters,
not necessarily distinct. Two words are equal if and only if they have the
same number of letters and if the letters are the same and in the same order.
Consider all words of length ¢, where ! > 1. How many words of length [
have at least two repetitions of a fixed letter ? How many have three such
repetitions? In how many words of length ! do there occur two specified
distinct letters?

(1.23) Exercise.

(a) Let A4 be a finite set, and let »(4) denote the number of elements
of A: thus v(A4) is a nonnegative integer. Prove that

v(4 U B) = »(4) + v(B) — »(4 N B).
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(b) Generalize this identity toy(4 U BUC) and to»(AU BUCU D).

(c) A university registrar reported that the total enrollment in his
university was 10,000 students. Of these, he stated, 2521 were married,
6471 were men, 3115 were over 21 years of age, 1915 were married men,
1873 were married persons over 21 years of age, and 1302 were married
men over 21 years of age. Could this have been the case?

(d) Help the registrar. For a student body of 10,000 members, find
positive integers for the categories listed in (c) that are consistent with
the identity you found in (b).

(1.24) Exercise. Prove that in any Boolean ring we have the iden-
tities

(@ x+x=0;

(b) xy = yx.

(1.25) Exercise. (a) Let B be the set of all positive integers that
divide 30. For x, y € B, let x V y be the least common multiple of x and y,

and let x*= ? Prove that B is a Boolean algebra. Find an algebra of
sets that represents B as in (1.14).
(b) Generalize (a), replacing 30 by any square-free positive integer.
(c) Generalize (b) by considering the set B of all square-free positive
integers, defining x V y as the least common multiple of x and y, x A y

as the greatest common divisor of ¥ and y, and x a y as :X; . Show

that B can be represented as a certain ring of sets but not as an algebra
of sets.

§ 2. Relations and functions

In this section we take up the concepts of relation and function,
familiar in several forms from elementary analysis. We adopt the currently
popular point of view that relations and functions are indistinguishable
from their graphs, 4.¢., they are sets of ordered pairs. As in the case of
sets, we content ourselves with a highly informal discussion of the subject.

(2.1) Definition. Let X and Y be sets. The Cartesian product of X
and Y is the set X > Y of all ordered pairs (x, y) such that x € X and
yEY.

We write (x, y) = (4, v) if and only if x = % and y = v. Thus (1, 2)
#* (2, 1) while {1, 2} = {2, 1}.

(2.2) Definition. A relation is any set of ordered pairs. Thus a relation
is any set which is a subset of the Cartesian product of two sets. Observe
that ¢ is a relation.

(2.3) Definitions. Let / be any relation. We define the domain of f to
be the set domf = {x: (x, y) € f for some y} and we define the range of f
to be the set mgf = {y: (x, y) € f for some x}. The symbol /-* denotes the
inverse of f: f-1= {(y, ) : (x, y) €f}.



