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Preface

As this Preface is being written, the twentieth century is coming to an end.
Historians may perhaps come to refer to it as the century of information, just
as its predecessor is associated with the process of industrialisation. Successive
technological developments such as the telephone, radio, television, computers
and the Internet have had profound effects on the way we live. We can see pic-
tures of the surface of Mars or the early shape of the Universe. The contents of
a whole shelf-load of library books can be compressed onto an almost weight-
less piece of plastic. Billions of people can watch the same football match, or
can keep in instant touch with friends around the world without leaving home.
In short, massive amounts of information can now be stored, transmitted and
processed, with surprising speed, accuracy and economy.

Of course, these developments do not happen without some theoretical ba-
sis, and as is so often the case, much of this is provided by mathematics. Many
of the first mathematical advances in this area were made in the mid-twentieth
century by engineers, often relying on intuition and experience rather than a
deep theoretical knowledge to lead them to their discoveries. Soon the math-
ematicians, delighted to see new applications for their subject, joined in and
developed the engineers’ practical examples into wide-ranging theories, com-
plete with definitions, theorems and proofs. New branches of mathematics were
created, and several older ones were invigorated by unexpected applications:
who could have predicted that error-correcting codes might be based on alge-
braic curves over finite fields, or that cryptographic systems might depend on
prime numbers?

Information Theory and Coding Theory are two related aspects of the prob-
lem of how to transmit information efficiently and accurately from a source,
through a channel, to a receiver. This includes the problem of how to store
information, where the receiver may be the same as the source (but later in

ix
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time). As an example, space exploration has created a demand for accurate
transmission of very weak signals through an extremely noisy channel: there is
no point in sending a probe to Mars if one cannot hear and decode the mes-
sages it sends back. In its simplest form this theory uses elementary techniques
from Probability Theory and Algebra, though later advances have been based
on such topics as Combinatorics and Algebraic Geometry.

One important problem is how to compress information, in order to transmit
it rapidly or store it economically. This can be done by reducing redundancy: a
familiar example is the use of abbreviations and acronyms such as “UK”, “IBM”
and “radar” in place of full names, many of whose symbols are redundant from
the point of view of information content. Similarly, we often shorten the names
of our closest friends and relatives, so that William becomes Will or Bill.

Another important problem is how to detect and correct errors in infor-
mation. Human beings and machines cannot be relied upon always to avoid
mistakes, and if these are not corrected the consequences can be serious. Here
the solution is to increase redundancy, by adding symbols which reinforce and
protect the message. Thus the NATO alphabet Alpha, Bravo, Charlie, ...,
used by armed forces, airlines and emergency services for spoken communica-
tion, replaces the letters A, B, C, ... with words which are chosen to sound as
unlike each other as possible: for instance, B and V are often confused (they are
essentially the same in some languages), but Victor is unlikely to be mistaken
for Bravo, even when misheard as Bictor.

Information Theory, much of which stems from an important 1948 paper of
Shannon [Sh48], uses probability distributions to quantify information (through
the entropy function), and to relate it to the average word-lengths of encodings
of that information. In particular, Shannon’s Fundamental Theorem guarantees
the existence of good error-correcting codes, and the aim of Coding Theory is
to use mathematical techniques to construct them, and to provide effective
algorithms with which to use them. Despite its name, Coding Theory does not
involve the study of secret codes: this subject, Cryptography, is closely related
to Information Theory through the concepts of entropy and redundancy, but
since the mathematical techniques involved tend to be rather different, we have
not included them.

This book, based on a third-year undergraduate course introduced at
Southampton University in the early 1980s, is an attempt to explain the basic
ideas of Information and Coding Theory. The main prerequisites are elemen-
tary Probability Theory and Linear Algebra, together with a little Calculus,
as covered in a typical first-year university syllabus for mathematicians, engi-
neers or scientists. Most textbooks in this area concentrate mainly or entirely
on either Information Theory or Coding Theory. However, the two subjects are
intimately related (through Shannon’s Theorem), and we feel that there are
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strong arguments for learning them together, at least initially.

Chapters 1-5 (representing about 60% of the main text) are mainly on In-
formation Theory. Chapter 1, which has very few prerequisites, shows how to
encode information in such a way that its subsequent decoding is unambiguous
and instantaneous: the main results here are the Sardinas—Patterson Theorem
(proved in Appendix A), and the Kraft and MacMillan inequalities, concerning
the existence of such codes. Chapter 2 introduces Huffman codes, which —
rather like Morse code — minimise average word-length by systematically as-
signing shorter code-words to more frequent symbols; here (as in Chapters 3-5)
we use some elementary Probability Theory, namely finite probability distri-
butions. In Chapter 3 we use the entropy function, based on probabilities and
their logarithms, to measure information and to relate it, through a theorem
of Shannon, to the average word-lengths of encodings. Chapter 4 studies how
information is transmitted through a channel, possibly subject to distortion
by “noise” which may introduce errors; conditional probabilities allow us to
define certain system entropies, which measure information from several points
of view, such as those of the sender and the receiver. These lead to the concept,
of channel capacity, which is the maximum amount of information a channel
can transmit. In Chapter 5 we meet Shannon’s Fundamental Theorem, which
states that, despite noise, information can be transmitted through a channel
with arbitrarily great accuracy, at rates arbitrarily close to the channel capac-
ity. We sketch a proof of this in the simple but important case of the binary
symmetric channel; a full proof for this channel, given in Appendix C, relies on
the only advanced result we need from Probability Theory, namely the Law of
Large Numbers, explained in Appendix B.

The basic idea of Shannon’s Theorem is that one can transmit information
accurately by using code-words which are sufficiently unlike each other that,
even if some of their symbols are incorrect, the receiver is unlikely to confuse

- them (think of Bravo and Victor). Unfortunately, neither the theorem nor its
proof shows us how to find specific examples of such codes, and this is the aim
of Coding Theory, the subject matter of Chapters 6 and 7. In these chapters,
which are rather longer than their predecessors, we introduce a number of fairly
simple examples of error-correcting codes. In Chapter 6 we use elementary, di-
rect methods for this; the main result here is Hamming’s sphere-packing bound,
which uses a simple geometric idea to give an upper bound on the number of
code-words which can correct a given number of errors. In Chapter 7 we con-
struct slightly more advanced examples of error-correcting codes using Linear
Algebra and Matrix Theory, specifically the concepts of vector spaces and sub-
spaces, bases and dimensions, matrix rank, and row and column operations.
We also briefly show how some ideas from Combinatorics and Geometry, such
as block designs and projective geometries, are related to codes.
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The usual constraints of space and time have forced us to omit several
interesting topics, such as the links with Cryptography mentioned above, and
only briefly to sketch a few others. In Information Theory, for instance, Markov
sources (those with a “memory” of previous events) appear only as an exercise,
and similarly in Coding Theory we have not discussed cyclic codes and their
connections with polynomial rings. Instead, we give some suggestions for further
reading at the end of the book.

The lecture course on which this book is based follows Chapters 1-7, usu-
ally omitting Sections 5.5, 6.5, 6.6 and 7.5 and the Appendices. A course on
Information Theory could be based on Chapters 1-5, perhaps with a little more
material on Markov sources or on connections with Cryptography. A course on
Coding Theory could follow Chapters 6 and 7, with some background material
from Chapter 5 and some extra material on, for instance, cyclic codes or weight
enumerators.

We have tried, wherever possible, to give credit to the originators of the
main ideas presented in this book, and to acknowledge the sources from which
we have obtained our results, examples and exercises. No doubt we have made
omissions in this respect: if so, they are unintentional, and no slight was in-
tended.

We are grateful to Keith Lloyd and Robert Syddall, who have both taught
and improved the course on which this book is based, together with the hun-
dreds of students whose reactions to the course have been so instructive. We
thank Karen Barker, Beverley Ford, David Ireland and their colleagues at
Springer for their advice, encouragement and expertise during the writing of
this book. We are indebted to W.S. (further symbols are surely redundant)
for providing the quotations which begin each chapter, and finally we thank
Peter and Elizabeth for tolerating their occasionally distracted parents with
unteenagerly patience and good humour.



Notes to the Reader

Chapters 1-5 cover the basic material on Information Theory, and they should
be read in that order since each depends fairly heavily on its predecessors.
The Sardinas—Patterson Theorem (8§1.2) and Shannon’s Fundamental Theorem
(§5.4) are important results with rather long proofs; we have simply outlined
the proofs in the text, and the complete proofs in Appendices A and C can be
omitted on first reading since their details are not required later. Other sections
not required later are §5.5, §6.5, §6.6 and §7.5.

In a sense, the book starts afresh with Chapters 6 and 7, which are about
Coding Theory. These two chapters could be read on their own, though it would
help to look first at some of Chapter 5, in particular §5.2 for the example of
repetition codes, §5.3 for the concept of Hamming distance, and §5.4 and §5.6
for the motivation provided by Shannon’s Theorem.

We assume familiarity with some of the basic concepts of Probability Theory
(in Chapters 1-5) and Linear Algebra (in Chapters 6 and 7), together with a
few results from Calculus; there is some suggested background reading on these
topics at the end of the book, in the section Suggestions for Further Reading,
together with some comments on further reading in Information and Coding
Theory.

The exercises are an important feature of the book. Those embedded in
the text are designed to test and reinforce the reader’s understanding of the
concepts immediately preceding them. Most of these are fairly straightforward,
and it is best to attempt them right away, before reading further. The sup-
plementary exercises at the end of each chapter are often more challenging;
they may require several ideas from that chapter, and possibly also from ear-
lier chapters. Some of these supplementary exercises are designed to encourage
the reader to explore the theory further, beyond the topics we have covered.
Solutions of all the exercises are given at the end of the book, but it is strongly
recommended to try the exercises first before reading the solutions.
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1

Source Coding

Words, words, words. (Hamlet)

This chapter considers how the information emanating from a source can be
encoded, so that it can later be decoded unambiguously and without delay.
These two requirements lead to the concepts of uniquely decodable and instan-
taneous codes. We shall find necessary and sufficient conditions for a code to
have these properties, we shall see how to construct such codes, and we shall
prove Kraft’s and McMillan’s inequalities, which essentially say that such codes
exist if and only if they have sufficiently long code-words.

1.1 Definitions and Examples

Information theory is concerned with the transmission of information from a
sender, through a channel, to a receiver. The sender and receiver could be
people or machines. In most cases they are different, but when information is
being stored for later retrieval, the receiver could be the sender at some future
time. We will assume that the information comes from a source S, which emits
a sequence s = X;X3X3... of symbols X,; for instance, X,, might be the
n-th symbol in some message, or the outcome of the n-th repetition of some
experiment. In practice, this sequence will always be finite (nothing lasts for
ever), but for theoretical purposes it is sometimes useful also to consider infinite

1



