BER it EHEE ENE AR AR

Automata, Computabilty, and Complexity
Theory and Applications

BaNHLIE R SR

ATERE AR

RFHENBRTESNELFMRT] (REIR)

Automata, Computability, and
Complexity

Theory and Applications

BaHEIE 5N AH

‘Elaine Rich &

English reprint edition copyright © 2009 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Automata, Computability, and Complexity: Theory and Applications by Elaine
Rich, Copyright © 2009
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addfson-Wesley,
Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

AV SEEIRR T Pearson Education (EE/EE HAREHRD ARG TE N FE AL IRIRAAT .

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macao SAR).

{RTFHEARKIMEER (REFEFEEE. RIHFNITBEXINPELABHX) HEXT-
LU RBUS FERA 8L S B 01-2009-4346 43
AKHHEREE Pearson Education (5543 H R E) MABH RS, TIREERSHE.
MRS, BRI R. BEIREIE: 010-62782989 13701121933
BB ERLG E (CIP) i
[18)HLEE R 5 M Hi=Automata, Computability, and Complexity: Theory and Applications: 4 3 /
(%) B4 (Rich,E.) 3. —Jbim: % Asmaes, 200911
CRF RN [H 40 2 86 R 50D
ISBN 978-7-302-21293-5
ToFlees L Bl 1L ESHHLERR — %28 —8M — 253 IV, TP301.1
IR RRCAE 51 CIP B4l 4% 7 (20090 5% 181938 %5
FAEENH): A4l

AHREE T, TR N AR M Hbe JERUERNFFHEE A B
http:/ /www.tup.com.cn M 4B: 100084
2 #l: 010-62770175 BB M. 010-62786544

B SIRERSE: 010-62776969, c-service@tup.tsinghua.edu.cn
B 8 K i%: 010-62772015, zhiliang@tup.tsinghua.edu.cn
s NSFENR) T
NN TG EN AT BR A
A [WF RN
185X230 ERk. 70.5
2009 4 11 A% 1 iR ED 3R: 2009 5 11 A5 1 IREDKI
1~3000
99.00 JC

A B SCFEARIE . WED . BT, BT, BTSRRI B, T 5 e A R RS R
. BERWAE: 010-62770177 % 3103 PR 5 023235-01

]

o i
S8 58 DDk ik B

(A SEHHRERD

]

i b 5 B

WA 21 e, MAZENZET . BHURSGE E RS EE M. ERAHOR
BERMAA MRS . A RERERBAL, HREEERF I IBNS. S%HH, 1§
AEFMBERAA RSN, DRZAEGEEN. HilRESSHENEMETRE, N T
- OMARECR BB R, BRI IE AR K (e B R I = BRSSO

HHERFERIRA M 1996 T4, SESELANRAT &6, BENHRT “ REUH
HEAY CGEERRO” F—RIIGEEY, ZHEANZEEFRIDLMCRE. A 21 4, &K
AR A BE &S SFHEEMERRS WYL, ACAEREM L, & P5 REBANA, &
BPBIFARY, — R IS A ST KPR E M T R E s R AR, R 5 A o LB W
A B B LM, HRAE CREIENBE RSN E LM RS GEORD”, U
WA o IRV B RO AE A RS B B RCR AN W B Bl EAHE N LK
HAZRUR R BATHERE EAMT AL E R B BM, CIRIBATHE < KU HHHE R 4
MRS CGEERO” MAREL, &SI ENFE.

K R

PREFACE

This book has three goals:

1. To introduce students to the elegant theory that underlies modern computing.

2. To motivate students by showing them that the theory is alive. While much of it
has been known since the early days of digital computers (and some of it even
longer), the theory continues to inform many of the most important applications
that are considered today.

3. To show students how to start looking for ways to exploit the theory in their own
work.

The core of the book, as a standard textbook, is Parts I through V. They address the first
of the stated goals. They contain the theory that is being presented. There is more ma-
terial in them than can be covered in a one-semester course. Sections that are marked
with a # are optional, in the sense that later material does not, for the most part, de-
pend on them. The Course Plans section on page xv suggests ways of selecting sections
that are appropriate for some typical computer science courses.

Then there are seventeen appendices:

» Appendix A reviews the mathematical concepts on which the main text relies. Stu-
dents should be encouraged to review it during the first week of class.

* Appendix B describes techniques for working with logical formulas (both Boolean
and first-order).

* Appendices C, D, E and F treat selected theoretical concepts in greater depth. In

particular, they contain the details of some proofs that are only sketched in the
main text.

* Appendices G through Q address the second and third goals. They describe appli-
cations of the techniques that are described in the main body of the book. They also
contain some interesting historical material. Although they are long (at least in
comparison to the space that is devoted to applications in most other books in this
area), they only skim the surface of the applications that they present. But my hope
is that that is enough. The World Wide Web has completely changed our ability to
access knowledge. What matters now is to know that something exists and thus to
look for it. The short discussions that are presented in these appendices will, I hope,
give students that understanding.

There is a Web site that accompanies this book: http://www.theoryandapplications.org/.
It is organized into the same sections as the book, so that it is easy to follow the two in
parallel. The symbol & following a concept in the text means that additional material is
available on the Web site.

xiii

xiv Preface

Throughout the text, you’ll find pointers to the material in the appendices, as well as
to material on the book’s Web site. There are also some standalone application notes.
These pointers and notes are enclosed in boxes, and refer you to the.appropriate ap-
pendix and page number or to the Web. The appendix references look like this:

This technique really is useful. (H. 1. 2.)
Notation
It is common practice to write definitions in the following form:
A something is a special something if it possesses property P.

This form is used even though property P is not only a sufficient but also a necessary
condition for being a special something. For clarity we will, in those cases, write “if and
only if”, abbreviated “iff”, instead of “if”. So we will write:

A ‘something is a special something iff it possesses property P.

Throughout the book we will, with a few exceptions, use the following naming con-
ventions:

Examples
sets capital letters, early in the alphabet, A.B,C,D,S

plus §
logical formulas capital letters, middle of the alphabet P,O,R
predicates and relations capital letters, middle of the alphabet P,O,R
logical constants subscripted X’s and specific names X\, X, John, Smoky
functions lower case letters or words £, & convert
integers lower case letters, middle of the alphabet i j, k, L, mn
string-valued variables lower case letters, late in the alphabet SLuv,wxy
literal strings written in computer font abc, aabbb
language-valued variables upper case letters starting with L L, L, L,
specific languages nonitalicized strings A"B". WW
regular expressions lower case Greek letters a, B,y
states lower case letters, middle of the alphabet p, q,r,s,¢
nonterminals in grammar rules upper case letters A,B,C S, T
working strings in grammatical lower case Greek letter a, B,y
derivations
strings representing a PDA’s lower case Greek letter a, B,y
stack

other variables lower case letters, late in the alphabet X, y,.2

Programs and algorithms will appear throughout the book, stated at varying levels- A

of detail. We will use the following formats for describing them:

® Exact code in some particular programming language will be written the same way
other strings are written.

Preface xv

® Algorithms that are described in pseudocode will be written as:

Until an even-length string is found do:
Generate the next string in the sequence.

When we want to be able to talk about the steps, they will be numbered, so we will
write: '

1. Until an even-length string is found do:
1.1. Generate the next string in the sequence.
2. Reverse the string that was found.

When comments are necessary, as for example in code or in grammars, they will be
preceded by the string /*.

Course Plans

Appendix A summarizes the mathematical concepts on which the rest of the book re-
lies. Depending on the background of the students, it may be appropriate to spend one
or more lectures on this material. At the University of Texas, our students have had two
prior courses in logic and discrete structures before they arrive in my class, so I have
found that it is sufficient just to ask the students to read Appendix A and to work a se-
lection of the exercises that are provided at the end of it.

Part I lays the groundwork for the rest of the book. Chapter 2 is essential, since it
defines the fundamental structures: strings and languages. I have found that it is very
useful to cover Chapter 3, which presents a roadmap for the rest of the material. It
helps students see where we are going and how each piece of the theory fits into the
overall picture of a theory of computation. Chapter 4 introduces three ideas that be-
come important later in the book. I have found that it may be better to skip Chapter 4
at the beginning of my class and to return to each of its sections once or twice later, as
the concepts are required.

If the optional sections are omitted, Chapters 5, 6,8, 9, 11-14, 17-21, and, optionally,
23 and/or 24 cover the material in a standard course in Automata Theory. Chapter 15
(Context-Free Parsing) contains material that many computer science students need to
see and it fits well into an Automata Theory course. I used to include much of it in my
class. But that material is often taught in a course on Programming Languages or Com-
pilers. In that case, it makes sense to omit it from the Automata Theory course. In its
place, I now cover the optional material in Chapter 5, particularly the section on sto-
chastic finite automata. I also cover Chapter 22. I've found that students are more
motivated to tackle the difficult material (particularly the design of reduction proofs)
in Chapter 21 if they can see ways in which the theory of undecidability applies to
problems that are, to them, more intriguing than questions about the behavior of Turing
machines.

This text is also appropriate for a broader course that includes the core of the clas-
sic theory of automata plus the modern theory of complexity. Such a course might

xvi

Preface

cover Chapters 2-3, 5, 8,11, 13,17-21, and 27-30, omitting sections as time pressures
require.

This text is unique in the amount of space it devotes to applications of the core the-
oretical material. In order to make the application discussions coherent, they are sepa-
rated from the main text and occur in the appendices at the end of the book. But I have
found that I can substantially increase student interest in my course by sprinkling appli-
cation discussions throughout the term. The application references that occur in the
main text suggest places where it makes sense to do that.

Resources for Instructors

There is a website, www.prenhall.com/rich, that contains materials that have been de-
signed to make it easy to teach from this book. In particular, it contains:

* a complete set of Powerpoint slides,

* solutions to many of the Exercises, and

¢ additional problems, many of them with solutions.

I would like to invite instructors who use this book to send me additional problems
that can be shared with other users.

ACKNOWLEDGMENTS

This book would not have been possible without the help of many people. When I first
began teaching CS 341, Automata Theory, at the University of Texas, I was given a col-
lection of notes that had been written by Bob Wall and Russell Williams. Much of the
material in this book has evolved from those notes. I first learned automata theory
from [Hopcroft and Ullman 1969). Over the years that I have taught CS 341, I have
used several textbooks, most frequently [Lewis and Papadimitriou 1988] and [Sipser
2006]. Much of what I have written here has been heavily influenced by the treatment
of this material in those books.

Several of my friends, colleagues, and students have provided examples, answered
numerous questions, and critiqued what I have written. I am particularly indebted to
Don Baker, Volker Bandke, Jim Barnett, Jon Bentley, Gary Bland, Jaime Carbonell,
Alan Cline, Martin Cohn, Dan Connolly, Ann Daniel, Chris Edmonson-Yurkanan,
Scott Fahlman, Warren Gish, Mohamed Gouda, Jim Hendler, Oscar Hernandez, David
Jefferson, Ben Kuipers, Greg Lavender, Tim Maxwell, Andy Mills, Jay Misra, Luay
Nakhleh, Gordon Novak, Gabriela Ochoa, Dewayne Perry, Brian Reid, Bob Rich,
Mike Scott, Cathy Stacy, Peter Stone, Lynda Trader, and David Zuckerman. Luay
Nakhleh, Dan Tamir, and Bob Wall have used drafts of this book in their classes. I
thank them for their feedback and that of their students.

I would also like to thank all of the students and teaching assistants who have
helped me understand both why this material is hard and why it is exciting and useful.
A couple of years ago, Tarang Mittal and Mat Crocker finished my class and decided
that they should create an organized automata theory tutoring program the following
fall. They got the program going and it continues to make a big difference to many stu-
dents. I'd like to thank Tarang and Mat and the other tutors: Jason Pennington, Alex
Menzies, Tim Maxwell, Chris St. Clair, Luis Guimbarda, Peter Olah, Eamon White,
Kevin Kwast, Catherine Chu, Siddharth Natarajan, Daniel Galvan, Elton Pinto, and
Jack Djeu.

My students have helped in many other ways as well. Oscar Hernandez helped me
with several of the application appendices and made the Powerpoint slides that accom-
pany the book. Caspar Lam designed the Web site for the book. David Reaves took
pictures. My quilt, Blue Tweed, appears on the book’s cover and on the Web site and
slides. David took all the pictures that we used.

I would not have been in a position to write this book without the support of my fa-
ther, who introduced me to the elegance of mathematics, Andy van Dam for my under-
graduate experience at Brown, and Raj Reddy for my graduate experience at CMU. I
cannot thank them enough.

Special thanks go to my family and friends, particularly my husband, Alan Cline, and
my father, Bob Rich, for countless meals taken over by discussions of this material,
proofreading more drafts than I can count, and patience while living with someone
who is writing a book.

xvii

CREDITS

On the Cover:

A quilt, Blue Tweed (1996, 53” x 80”, cotton, machine pieced and quilted), made by the
author. Notice that your eye fills in the vertical lines, so they appear to run the length
-of the quilt, even though the colors in the middle of the quilt are all about the same.
Quilt photography by David Reaves.

Photo Credits:

Photograph of a fragment of the Antikythera Mechanism and two photographs of the recon-
structed model of it, Figures P.1 and P2: copyright of the Antikythera Mechanism Research
Project.

Photos of Prague orlog, Figure P.3, page 1056: Ing. Karel Mayr.
Photo of abacus, Figure P4, page 1057: David Reaves.

Photo of Jacquard loom, Figure P.5, page 1058: Stan Sherer.
Photo of Sony Aibo robot, Figure P.10, page 1062: Alan Cline.

Credits for Exercises:

Alan Cline: Exercise 27.9.

[Brachman and Levesque 2004}: Exercise 33.10.

Jay Misra: Exercise 20.10.

Luay Nakhleh: Exercises 8.17,17.5,17.12,21.18,21.21,21.22.

Cathy Stacy: Exercise 5.3.

David Zuckerman: Exercises 22.5,28.11, 28.16, 28.23(d), 28.26,29.3, 30.1

Other Credits:

IBM 7090 example, page 2: Brian Reid.

IBM 360 JCL, page 3: Volker Bandke, http://www.bsp-gmbh.com/hercules/herc _jcLhtml.
The Java example, page 3: Mike Scott.

Example 5.10, page 64: from [Misra 2004).

The poem, “The Pumping Lemma for DFAs”, page 198: Martin Cohn 8.

The drawir%s generated by Lindenmayer systems, pages 547-549: Generated by Alan Cline in
MATLAB®™.

Graph showing the growth rates of functions, page 598: Generated by Alan Cline in MATLAB®.
Progression of closures given in Example A.11, pages 777-778: Alan Cline.

Example A.19, page 784: Alan Cline.

Analysis of iterative deepening, page 861: Alan Cline.

The proofs in Section F.1, pages 869-875: Alan Cline.

The network protocol diagrams and corresponding state machines, pages 919-924: Oscar
Hernandez.

A very long English sentence, page 984: http://www.plainenglish.co.uk/longsentences.htm.

Xix

XX Credits

s Drawing of girl with cat, page 995: Lynda Trader.

o Drawing of bear with rifle, page 997: Lynda Trader.

¢ Sound wave for the word “cacophony”, page 1000: Alan Cline.

o Simplified HMM for speech understanding, page 1002: Jim Barnett.

¢ Drawing of the Towers of Hanoi, page 1058: Alan Cline.

¢ The schematic diagram and the finite state diagram of a binary multiplier, page 1061: Oscar
Hernandez. :

e Diagram of the FSM robot controller, page 1063: Peter Stone.

CONTENTS

Preface xiii
Acknowledgments xvii
Credits xix

PART I: INTRODUCTION 1

1 Why Study the Theory of Computation? 2

1.1 The Shelf Life of Programming Tools 2
1.2 Applications of the Theory Are Everywhere 5

2 Llanguages and Strings 8
2.1 Strings 8
2.2 lLanguages 10
Exercises 19

3 The Big Picture: A Language Hierarchy 21
3.1 Defining the Task: Language Recognition 21
3.2 The Power of Encoding 22
3.3 A Machine-Based Hierarchy of Language Classes 28

3.4 A Tractability Hierarchy of Language Classes 34
Exercises 34

4 Computation 36

4.1 Decision Procedures 36

4.2 Determinism and Nondeterminism 41

4.3 Functions on Languages and Programs 48
Exercises 52

PART 1l: FINITE STATE MACHINES AND REGULAR
LANGUAGES 53

5 Finite State Machines 54

5.1 Deterministic Finite State Machines 56
5.2 The Regular Languages 60
5.3 Designing Deterministic Finite State Machines 63

iv Contents

5.4 Nondeterministic FSMs 66

5.5 From FSMs to Operational Systems 79

5.6 Simulators for FSMs # 80

5.7 Minimizing FSMs & 82

5.8 A Canonical Form for Regular Languages 94

5.9 Finite State Transducers # 96

5.10 Bidirectional Transducers # 98

5.11 Stochastic Finite Automata: Markov Models and HMMs ® 101

5.12 Finite Automata, Infinite Strings: Biichi Automata ® 115
Exercises 121

6 Regular Expressions 127
6.1 What is a Regular Expression? 128
6.2 Kleene's Theorem 133 '
6.3 Applications of Regular Expressions 147
6.4 Manipulating and Simplifying Regular Expressions 149
Exercises 151

7 Regular Grammars # 155

7.1 Definition of a Regular Grammar 155
7.2 Regular Grammars and Regular Languages 157
Exercises 161

8 Regular and Nonregular Languages 162

8.1 How Many Regular Languages Are There? 162
8.2 Showing That a Language Is Regular 163
8.3 Some important Closure Properties of Regular Languages 165
8.4 Showing That a Language is Not Regular 169
8.5 Exploiting Problem-Specific Knowledge 178
8.6 Functions on Regular Languages 179
Exercises 182

9 Algorithms and Decision Procedures for Regular
Languages 187

9.1 Fundamental Decision Procedures 187
9.2 Summary of Algorithms and Decision Procedures for Regular Languages 194
Exercises 196

10 Summary and References 198

References 199

Contents

PART Ill: CONTEXT-FREE LANGUAGES AND PUSHDOWN
AUTOMATA 201

11 Context-Free Grammars 203

1.1
11.2
113
11.4
11.5
11.6
11.7
11.8
119
11.10

Introduction to Rewrite Systems and Grammars 203
Context-Free Grammars and Languages 207
Designing Context-Free Grammars 212

Simplifying Context-Free Grammars & 212

Proving That a Grammar is Correct ®# 215
Derivations and Parse Trees 218

Ambiguity 220

Normal Forms ® 232

Island Grammars & 241

Stochastic Context-Free Grammars & 243

- Exercises 245

12 Pushdown Automata 249

121
12.2
123
124
12.5
12.6

Definition of a (Nondeterministic) PDA 249
Deterministic and Nondeterministic PDAs 254
Equivalence of Context-Free Grammars and PDAs 260
Nondeterminism and Halting 274

Alternative Equivalent Definitions of a PDA @ 275
Alternatives that are Not Equivalent to the PDA # 277
Exercises 277

13 Context-Free and Noncontext-Free Languages 279

13.1
13.2
133
13.4
13.5
13.6
13.7
138

Where Do the Context-Free Languages Fit in the Big Picture? 279
Showing That a Language is Context-Free 280.

The Pumping Theorem for Context-Free Languages 281

Some important Closure Properties of Context-Free Languages 288
Deterministic Context-Free Languages # 295

Ogden’s Lemma ® 303

Parikh's Theorem ® 306

Functions on Context-Free Languages # 308

Exercises 310

14 Algorithms and Decision Procedures for Context-Free
Languages 314

14.1
14.2

The Decidable Questions 314
The Undecidable Questions 320

vi Contents

14.3 Summary of Algorithms and Decision Procedures for Context-Free
Languages 320

Exercises 322

15 Context-Free Parsing ® 323

15.1 Lexical Analysis 325

15.2 Top-Down Parsing 327

15.3 Bottom-Up Parsing 340

15.4 Parsing Natural Languages 350
Exercises 358

16 Summary and References 360
References 360

PART IV: TURING MACHINES AND UNDECIDABILITY 363
17 Turing Machines 364

17.1 Definition, Notation and Examples 364
17.2 Computing With Turing Machines 375
17.3 Adding Multiple Tapes and Nondeterminism 382
17.4 Simulating a “Real” Computer ®# 393
17.5 Alternative Turing Machine Definitions ® 396
17.6 Encoding Turing Machines as Strings 400
17.7 The Universal Turing Machine 404
Exercises 407

18 The Church-Turing Thesis 411

18.1 The Thesis 411

18.2 Examples of Equivalent Formalisms ® 414
Exercises 424

19 The Unsolvability of the Halting Problem 426
19.1 The Language H is Semidecidable but Not Decidable 428
19.2 Some Implications of the Undecidability of H 431

19.3 Back to Turing, Church, and the Entscheidungsproblem 432
Exercises 433

20 Decidable and Semidecidable Languages 435

20.1 D: The Big Picture 435
20.2 SD: The Big Picture 435

Contents

20.3 Subset Relationships between D and SD 437
20.4 The Classes D and SD Under Complement 438
20.5 Enumerating a Language 440
20.6 Summary 444

Exercises 445

21 Decidability and Undecidability Proofs 448

21.1 Reduction 449

21.2 Using Reduction to Show that a Language is Not Decidable 452
21.3 Are All Questions About Turing Machines Undecidable? 466
21.4 Rice’s Theorem ® 468

21.5 Undecidable Questions About Real Programs 472

21.6 Showing That a Language is Not Semidecidable 474

21.7 Summary of D, SD/D and -SD Languages that Include Turing Machine
Descriptions 482

Exercises 483

22 Decidability of Languages That Do Not (Obviously) Ask
Questions about Turing Machines # 487

22.1 Diophantine Equations and Hiibert’s 10th Problem 488

22.2 Post Correspondence Problem 489

22.3 Tiling Problems 492

22.4 Logical Theories 495

22.5 Undecidable Problems about Context-Free Languages 499
Exercises 508

23 Unrestricted Grammars # 510

23.1 Definition and Examples 510
23.2 Equivalence of Unrestricted Grammars and Turing Machines 516
23.3 Grammars Compute Functions 518
23.4 Undecidable Problems About Unrestricted Grammars 521
23.5 The Word Problem for Semi-Thue Systems 522
Exercises 524

24 The Chomsky Hierarchy and Beyond ® 526

24.1 The Context-Sensitive Languages 526
24.2 The Chomsky Hierarchy 539
24.3 Attribute, Feature, and Unification Grammars 540
24.4 Lindenmayer Systems 544
Exercises 553

vii

viii Contents

25 Computable Functions # 555

25.1 What is a Computable Function? 555

25.2 Recursive Function Theory 565

25.3 The Recursion Theorem and Its Use 573
Exercises 580

26 Summary and References 581

References 582

PART V: COMPLEXITY 585

27 Introduction to the Analysis of Complexity 586

27.1 The Traveling Salesman Problem 586
27.2 The Complexity Zoo 589
27.3 Characterizing Problems 590
27.4 Measuring Time and Space Complexity 593
27.5 Growth Rates of Functions 597
27.6 Asymptotic Dominance 598
27.7 Algorithmic Gaps 604
27.8 Examples # 605
Exercises 617

28 Time Complexity Classes 621

28.1 The Language Class P 621
28.2 The Language Class NP 633
28.3 DoesP = NP? 642
28.4 Using Reduction in Complexity Proofs 644
28.5 NP-Completeness and the Cook-Levin Theorem 647
28.6 Other NP-Complete Probiems 656
28.7 The Relationship between P and NP-Complete 672
28.8 The Language Class Co-NP # 679
28.9 The Time Hierarchy Theorems, EXPTIME, and Beyond 681
28.10 The Problem Classes FP and FNP @ 689
Exercises 690

29 Space Complexity Classes 695

29.1 Analyzing Space Complexity 695

29.2 PSPACE, NPSPACE, and Savitch's Theorem 699
29.3 PSPACE-Completeness 704

29.4 Sublinear Space Complexity 713

