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PREFACE

This book has three goals:

1. To introduce students to the elegant theory that underlies modern computing.

2. To motivate students by showing them that the theory is alive. While much of it
has been known since the early days of digital computers (and some of it even
longer), the theory continues to inform many of the most important applications
that are considered today.

3. To show students how to start looking for ways to exploit the theory in their own
work.

The core of the book, as a standard textbook, is Parts I through V. They address the first
of the stated goals. They contain the theory that is being presented. There is more ma-
terial in them than can be covered in a one-semester course. Sections that are marked
with a # are optional, in the sense that later material does not, for the most part, de-
pend on them. The Course Plans section on page xv suggests ways of selecting sections
that are appropriate for some typical computer science courses.

Then there are seventeen appendices:

» Appendix A reviews the mathematical concepts on which the main text relies. Stu-
dents should be encouraged to review it during the first week of class.

* Appendix B describes techniques for working with logical formulas (both Boolean
and first-order).

* Appendices C, D, E and F treat selected theoretical concepts in greater depth. In

particular, they contain the details of some proofs that are only sketched in the
main text.

* Appendices G through Q address the second and third goals. They describe appli-
cations of the techniques that are described in the main body of the book. They also
contain some interesting historical material. Although they are long (at least in
comparison to the space that is devoted to applications in most other books in this
area), they only skim the surface of the applications that they present. But my hope
is that that is enough. The World Wide Web has completely changed our ability to
access knowledge. What matters now is to know that something exists and thus to
look for it. The short discussions that are presented in these appendices will, I hope,
give students that understanding.

There is a Web site that accompanies this book: http://www.theoryandapplications.org/.
It is organized into the same sections as the book, so that it is easy to follow the two in
parallel. The symbol & following a concept in the text means that additional material is
available on the Web site.

xiii
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Throughout the text, you’ll find pointers to the material in the appendices, as well as
to material on the book’s Web site. There are also some standalone application notes.
These pointers and notes are enclosed in boxes, and refer you to the.appropriate ap-
pendix and page number or to the Web. The appendix references look like this:

This technique really is useful. (H. 1. 2.)
Notation
It is common practice to write definitions in the following form:
A something is a special something if it possesses property P.

This form is used even though property P is not only a sufficient but also a necessary
condition for being a special something. For clarity we will, in those cases, write “if and
only if”, abbreviated “iff”, instead of “if”. So we will write:

A ‘something is a special something iff it possesses property P.

Throughout the book we will, with a few exceptions, use the following naming con-
ventions:

Examples
sets capital letters, early in the alphabet, A.B,C,D,S

plus §
logical formulas capital letters, middle of the alphabet P,O,R
predicates and relations capital letters, middle of the alphabet P,O,R
logical constants subscripted X’s and specific names X\, X, John, Smoky
functions lower case letters or words £, & convert
integers lower case letters, middle of the alphabet i j, k, L, mn
string-valued variables lower case letters, late in the alphabet SLuv,wxy
literal strings written in computer font abc, aabbb
language-valued variables upper case letters starting with L L, L, L,
specific languages nonitalicized strings A"B". WW
regular expressions lower case Greek letters a, B,y
states lower case letters, middle of the alphabet p, q,r,s,¢
nonterminals in grammar rules  upper case letters A,B,C S, T
working strings in grammatical lower case Greek letter a, B,y
derivations
strings representing a PDA’s lower case Greek letter a, B,y
stack

other variables lower case letters, late in the alphabet X, y,.2

Programs and algorithms will appear throughout the book, stated at varying levels- A

of detail. We will use the following formats for describing them:

® Exact code in some particular programming language will be written the same way
other strings are written.
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® Algorithms that are described in pseudocode will be written as:

Until an even-length string is found do:
Generate the next string in the sequence.

When we want to be able to talk about the steps, they will be numbered, so we will
write: '

1. Until an even-length string is found do:
1.1. Generate the next string in the sequence.
2. Reverse the string that was found.

When comments are necessary, as for example in code or in grammars, they will be
preceded by the string /*.

Course Plans

Appendix A summarizes the mathematical concepts on which the rest of the book re-
lies. Depending on the background of the students, it may be appropriate to spend one
or more lectures on this material. At the University of Texas, our students have had two
prior courses in logic and discrete structures before they arrive in my class, so I have
found that it is sufficient just to ask the students to read Appendix A and to work a se-
lection of the exercises that are provided at the end of it.

Part I lays the groundwork for the rest of the book. Chapter 2 is essential, since it
defines the fundamental structures: strings and languages. I have found that it is very
useful to cover Chapter 3, which presents a roadmap for the rest of the material. It
helps students see where we are going and how each piece of the theory fits into the
overall picture of a theory of computation. Chapter 4 introduces three ideas that be-
come important later in the book. I have found that it may be better to skip Chapter 4
at the beginning of my class and to return to each of its sections once or twice later, as
the concepts are required.

If the optional sections are omitted, Chapters 5, 6,8, 9, 11-14, 17-21, and, optionally,
23 and/or 24 cover the material in a standard course in Automata Theory. Chapter 15
(Context-Free Parsing) contains material that many computer science students need to
see and it fits well into an Automata Theory course. I used to include much of it in my
class. But that material is often taught in a course on Programming Languages or Com-
pilers. In that case, it makes sense to omit it from the Automata Theory course. In its
place, I now cover the optional material in Chapter 5, particularly the section on sto-
chastic finite automata. I also cover Chapter 22. I've found that students are more
motivated to tackle the difficult material (particularly the design of reduction proofs)
in Chapter 21 if they can see ways in which the theory of undecidability applies to
problems that are, to them, more intriguing than questions about the behavior of Turing
machines.

This text is also appropriate for a broader course that includes the core of the clas-
sic theory of automata plus the modern theory of complexity. Such a course might
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cover Chapters 2-3, 5, 8,11, 13,17-21, and 27-30, omitting sections as time pressures
require.

This text is unique in the amount of space it devotes to applications of the core the-
oretical material. In order to make the application discussions coherent, they are sepa-
rated from the main text and occur in the appendices at the end of the book. But I have
found that I can substantially increase student interest in my course by sprinkling appli-
cation discussions throughout the term. The application references that occur in the
main text suggest places where it makes sense to do that.

Resources for Instructors

There is a website, www.prenhall.com/rich, that contains materials that have been de-
signed to make it easy to teach from this book. In particular, it contains:

* a complete set of Powerpoint slides,

* solutions to many of the Exercises, and

¢ additional problems, many of them with solutions.

I would like to invite instructors who use this book to send me additional problems
that can be shared with other users.
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