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Preface

"This book is intended as a textbook for the course of ‘“Theory of Elasticity’’
. offered inuniversities and colleges of engineering. It can also be used as areference
book for engineers.

In this book plane problems are discussed first, After the. reader hag obtained a
preliminary knowledge of the basic theories and problem-solving methqu of the
course, spatial problems are dealt with, followed by discussions on problems in
platesand shells. On the whole, this arrangement meets the principle of proceeding
gradually from the basic and the easy, to the complex and difficult matenals, and
is helpful for teaching and leammg

In elucidating fundamental principles and deducmg basic equations, the author

has endeavoured to render mathematical derivation explicit and concise, and to
avoid using abstruse and overelaborate mathematical reasoning which is likely to
overshadow physical concepts. Therefore, the reader will find it easy to grasp the
quintessence of the contents.

In expounding problem-solving approaches,.the author not only dwells on the
nature of the approaches and their applications in engineering problems, but also
emphatically points out the mode of thinking in analysing problems and the proper
way of solving problems. Hopefully, the reader could be inspired to draw infer-

ences about other problems from a relevant example in the book, thus developmg .

the ability to analyse and solve problems independently.
In preparing this book, the author has quoted substantially from the book * ‘Theory

of Elasticity’’, which he wrote in Chinese in 1979. This early book has been widely

used in China’s universities and colleges of engineering and is currently published
in the third edition (a revised edition).
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a structural or machine element in the shape of a bar, straight or curved, which is

- . mechanics of materials, some assumptions are usually made on the strain condition
. orthe stress distribution. These assumptions simplify the mathematical derivation

- be used to check the approximate results obtained in mechanics of materials.

_mechanics, on the basis of mechanics of materials, deals with the stresses and

1

Introduction

1.1. CONTENTS OF THEORY OF ELASTICITY

The theory of elasticity, often called elasticity for short, is the branch of solid
mechanics which dealswith the stresses and deformationsin elasue solids produced
by external forces or changes in temperature.

For students of various engineering disciplines, the purpose of studymg elasticity
is to analyse the stresses.and displacements of structural or machine elements
within the elastic range and thereby to check the sufficiency of their strength,
stiffness and stability. Although this purpose is the same as that of studying
mechanics of materials and structural mechanics, these three branches of solid
mechanics do differ from one another both in the objects studied and in the methods -
of analysis used.

Mechanics of materials deals essent:ally with the stresses and dlsplacements of

subjected to tension, compression, shear, bending, or torsion. Structural

displacements of a structure in the form of a bar system, such as a truss or a rigid
frame. As to the structural eleménts which are not in the form of a bar, such as
blocks, plates, shells, dams and foundanons they are analysed only in the theory
of elasticity. Moreover, in order to analyse a bar element thoroughly and precisely,
it is necessary to apply the theory of elasticity. ‘

Although bar-shaped elements are studied both in mechanics of materials and
in theory of elasticity, the methods of analysis used in the two subjects are not
entirely the same. When such an element subjected to external loads is studied in

to a certain extent, but often mevuably reduce the degree of accuracy of the results ‘
obtained. In elasncxty, however, the study of a bar-shaped clement usually does
not need those assumptions. Thus the results obtained are more accurate and may



Appl'iéd Elasticity

For example; when the problem-of bending of a straight beam under transverse
loads is analysed in mechanics of materials, it is assumed that a plane section of
the beam remains plane after bending. This assumption leads to the linear dis-
tribution of bending stresses. In the theory of elasticity, however, one can solve
the problem without this assumption and prove that if the depth of the beam is not
much smaller than the span length, the stress distribution will be far from linear
variation, as shown in Fig. 7.3.1, and the maximum tensile stress is seriously

- undervalued in mechanics of materials.

Another example is the calculation of stresses in a prismatical tension member
with a hole. It is assumed in mechanics of materials that the tensile stresses are
" uniformly distributed across the net section of the member, whereas the précise
analysis in the theory of elasticity shows that the stresses are by no means uniform,
- but are concentrated near the hole; the maximum stress at the edge of the hole is
far greater than the average stress across the net section, as shown in Fig. 4.9.2.
~ Before the twentieth century, bar systems were formally analysed only in
structural mechanics and notin elasticity. In spite of this convention, in this century
many engineers used a joint application of the two branches of solid mechanics,
with the mutual infiltration of the two as aresult. The utilization of various methods
of analysis in structural mechanics greatly strengthened the theory of elasticity and
thus enabled enginegrs to obtain the solutions of many complicated problems in
- elasticity. Although these solutions are approximate theoretically, they prove to
be scientifically accurate for engineering designs. For example, using the finite

element method developed in the last thirty years, we can solve a problem in
" elasticity by the discretization of the body concerned and then the application of
 the displacement method, the force method, or the mixed method in structural
mechanics. This is a brilliant example of the joint application of the two branches
of solid mechanics.

Moreover, in the design of a structure, we can utilize the different branches of
solid mechanics for different members of the structure, and even for different parts
of a single member, to get the most sathfactory results with the least amount of
work.

The students should not pay .too much attention to the fuzzy and temporary -
* dividing lines between the three courses in solid mechanics. On the contrary, they

are advised to note all the possibilities of joint application of the three courses.

‘1.2 SOME IMPORTANT CONCEPTS IN THEORY OF ELASTICITY

The concepts most frequently encountered in elasticity are those about external
forces, stresses, deformations and displacements. Even though the students are
- already familiar with these concepts, it is still necessary to review them concisely
and introduce their notations and sign conventions used in elasticity.

There are two kings of external forces which may acton bodxes, namely the body
forces and the surfacc forces

b,
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Extemal forces or the loads, distributed over l.he volume of the body, such as
gravitational forces, or inertia forces in the case of a body in motion are called”
body forces. In order to indicate clearly the magnitude and direction of the body
force acting at a certain point P in the body, we take an elementary volume AV of
the body around point P, as shown in Fig. 1.2.1. Let the body force acting on AV -
be AQ, so the average intensity of the body force will be AQ/AV. As AV is con-
tinnously contracted, the quantity AQ, and hence the quantity AQ/AV, will con-
tinuously change in magnitude, dlrecuon and point of application. Now, if we
assume that the body forces are continuously distributed over the volume of the
body and contract AV toward pomt P, the quantity AQ/AV will approach a certain
limit F :

AQ
lim —==F,
AVl-)OAV

This vector quantity F is the 1mensxty of body force at P Since AV is a scalar
‘quantity, the lumung direction of AQ will give the direction of F. The - projections
of F on the %, y and z axes will be denoted by X, Y and Z rcspectwely and called
the body force components at P. Such a component is considered positive or
negative according as it acts in lhe positive or negative direction of the corre-
sponding coordinate axis. Its dimension is [force] [length] . -

External forces, or the loads, distributed over the surface of a bodys such as the
pressure of one body on another or hydrostatic pressure, are called surface forces.
To indicate clearly the magmtude‘ and direction of the surface force at a certain
point P on the surface, we take an elememary area AS of the surface around point
P,asshowninFig. 1.2.2. Let the surface force acting on AS be AQ, so the average
intensity will be AQ/AS. If we assume that the surface forces are continuously
distributed over the surface of the body and contract AS toward point P, the quantity
AQ/AS will approach a certam limit F:




NUS
Fig. 122

AQ
A!Sl To AS

ThlS vector quantity F is the intensity of surface force at P. The projections of
F on the x, y and z axes will be denoted by X, ¥ and Z respectively and called the
surface force components at P. Such acomponentis considered positive or negatwe
‘according as it acts in the posmve or negative direction of the coordinate axis. Its
dimension is [force] [length] %

Under the action of external forces, internal forces will be produced between the
parts of a body. To study the internal forces at a certain point P of the body, let
us imagine the body to be divided into two parts A and B by a section mn passing
through this point, as shown in Fig 1.2.3, and take an elementary area AA on the
section around P. Let AQ be the internal force acted by part B on part A across
AA, so the average intensity of the internal force, or the average stress, will be
AQ/AA. If we assume the internal force is continuously distributed over the section

~ and contract AA toward point P, the quantity AQ/AA will approach a certain limit

S: . S




lim ac =S.
. AA 50
The vector quantity § is said to be the stress on the section mn at point P and its
dxrect;on is the limiting direction of AQ. Usually, the stress is resolved into a
normal component called the normal stress and a tangentxal component T called
the shearing stress.

Generally speaking, the stresses od different sections passing through the same
point in a body are different. In order to describe the stress condition at the point
P, that is, the magnitudes and directions of the stresses on all those sections, we
isolate an elementary parallelepiped PABC (Fig. 1.2.4) from the body, with its

edges parallel to the coordinate axes.  Let the lengths of PA, PB and PC be

Ax, Ay and Az respectively. The stress on each of the six sides is resolved into
three components along the coordinate axes, one normal stress and- two shearing
stresses. To indicate the acting plane and the direction of a normal stress, we

associate the stress with a coordinate subscript. For instance, o, indicates the -

normal stress acting on a plane perpendicular to the x axisand alsoin the x direction.

As to a shearing stress, we should associate it with two coordinate subscnpts For
instance, 7,, indicates the shearing stress acting on a plane perpendicular to the x
axis, but in the y direction. .
Oz

C
z
Oy-
il
8

Fig. 12.4

If the outward normal to a side of the element is in the positive direction of a
coordinate axis, a stress component on this side will be considered positive as it

- acts in the positive direction of the corresponding axis; if the outward normal to a
side of the element is in the negative direction of a coordinate axis, a stress com-
ponent on this side will be considered positive as if acts in the negative direction
of the corresponding axis. Stresses in the directions opposite to those stated above




J“? ‘!f:

il
BlL,.

' 6 - Applied Elasticity

are considered negative. Thus, all the stresses shown in Fig. 1.2.4 are positive.

- 1t should be noted that the above sign convention and that used in mechanics of
" materials do not always give the same result for a shearing stress, though the two

conventions do give the same result for a normal stress, that is, positive for tension
and negative for compression. . The dimension of stresses is [force] [length} 2.

The six shearing stresses do not all differ from each other but are mutually equal
in pairs, For example, taking the moments of all the stresses about-the line ab,
which i$ parallel to the x axis and passes through the centrond of the element, we
can set up an equxhbnum equation as

%7 A.AxAzy 2, AyAx%z-=0

‘which ylelds 1, =71, after simplification. Together with the other two Similar
equations, we have

L Ty T = e Ty = T, (1.2.1)
Thus, it is proved that the shearing stresses which act on two perpendicular planes

-and are perpendicular to the intersecting line of the two planes are equal in mag-

nitude and have the same sign. Hence, the subscript letters of the notation of a
shearing stress may be interchanged at will.

Here we have ignored the variation of stresses in the element (they are taken as
being uniformly distributed), and we have also ignored the action of body forces.
However, it will be shown later that Eqs. (1.2.1) still hold even if the stresses are

‘not uniform and the body forces are taken into consideration.

_Incidentally, if the sign convention in mechanics of materials is used, Eqs (1.2.1)

* will be replaced by

T T Ty T =T T Ty = (1.22) .

which are not so simple as Eqs.(1.2.1). However, it may also be noted that the
sign convention in mechanics of materials must be adopted in the use of Mohr’s
circle of stress.

It will be shown later that the normal and shearing stresses on any section throug,h
point P can be evaluated, if the stress components 6, ©,, 0, T, =T,, T,=7T

zy?  “x X
and T, =T, at that point arc known. Consequently, the six stress componcnis
precisely define the stress condition at that point.

By deformation we mean the change of the shape of a body. Since the shape of
a body may be expressed by the lengths and angles of its parts, its deformation
may be expressed by the changes’in lengths and angles of the parts. To study the
deformation condition at a certain point P of the body, we consider again the
elementary parallelepiped shown in Fig. 1.2.4. During its deformation, generally
speaking, the lengths of its three edges PA, PB and PC, and also the three right.
angles between them, will change by certain amounts, however small. A change
in lengih per unit length is called a normal strain and the change of a right angle,
expressed in radian, is called a shearing strain. A normal strain will be denoted
by &, with g, denoting that of the edge PA along.the x axis, etc. It is considered

positive for elongation and negative for contraction, in consistency with the sign




Introduction -

convention for normal stresses. A shearing strain will be denoted by v, with ¥,

denoting the change of the right angle between PA and PB along the x and y axes, -
etc. Itis considered positive for a decrease of the right angle and negative for an
increase of the right angle, in consistency with thie sign convention for shearmg ‘
stresses. It is noted that all the strains are dimensionless. /-
It will be shown later that, if the six strains €,, €,, €,, V., ¥, andY,, are known

at any point of a body, we can evaluate the normal strain of any line segment at
the point and also the change of the angle made by any two line segments at the
point. Hence, the six strains, called the strain components at the point, precisely
define the strain condition at that point.

By displacement, we mean the change of position. The displacement at any point
of a body is expressed by its projections an the x, y and z axes, denoted by «, v and
w, respectively. These three projections are calied the displaccmen} components

.at the point. Such a component is considered positive or negative according as it
is in the positive or negative direction of the corresponding coordinate axis. The
dimension of a displacement or its components is {length].

Generally speaking, all the components of body forces, surface forces, stresses, .
strains and displacements at a point vary with the position of the point considered.
Consequently they are functions of coordinates in space. '

1.3 BASIC ASSUMPTIONS

To evaluate the stresses, strains and displacements in an elasticity problem, we
must derive a series of basic equations and boundary conditions. During the process.
of derivation, however, if we consider all the influential factors in an all-round .
way, the results obtained will be so complicated that practically no solutions can
be found. Therefore, we have to make some basic assumptions about the properties -
of the body considercd and on the range of out study. Under such assumptions, .
we can neglect some of the influential factors of minor importance temporarily;
thus simplifying the basic equations and the boundary conditions, In this text, we
will comply with the following assumptions in classical elasticity :

(1) The body is continuous, i.e., the whole volume of the body is filled with
continuous matter, without any void. Only under thi$ assumption, can the physical
quantitics in the body, such as stresses, strains and displacements, be continuously
distributed and thereby expressed by continuous functions of coordinates in space. .
In reality, all eéngineering materials are composed of elementary particles and do .
not accord with the assumption of continuity. However, it may be conceived that
this assumption will lead to no significant errors so long as the dimensions of the:.
body are very large in comparison with those of the parucles and with the distances

-between neighboring particles.

(2) The body is perfectly elastic, i.e., it wholly obeys Hooke’s law of elasticity, "
which shows the lincar relations between the stress components and the strain
components. Under this assumption, the elastic constants will be independent of -
the magnitudes of these components. The justification for this assumption lies in
the physxcal bchavnor of nearly all materials in engincering construction.

s,
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(3) The body is homogeneous so that the elastic properties are the same
throughout the body. Thus, the elastic constants will be independent of the location
inthe body. Under this assumption, we may analyse an elementary volume isolated
from the body and then apply the results of analysis to the entire body.

- (4) The body isisotropic so that the elastic properties are the same in all directions.
Thus, the elastic constants will be independént of the orientation of coordinate

£ axes.

Mostengineering materials do not satisfy the above two assumptions completely.

. Structural steel, for instance, when studied with a microscope, is seen to consist

of crystals of various kinds and various orientations. It seems that the material is
far from being homogeneous and isotropic. However, since the dimensions of any
.single crystal are very small in comparison with those of the entire body, and since

: the crystals are onemaned at random, the behavior of a piece of steel, on average,

* appears to justify the assumptions of: ‘homogeneity and isotropy. This is the reason
" why the solutions in elasticity based on these assumptions can be applied to steel
. structures with very great accuracy so long as none of the members has been

subjected to the process of rolling'which may produce a definite orientation of the

= crystals. In contrast with steel, wood is definitely not isotropic, since the elastic

properties of wood in the direction of the grain differ greatly from those in the
-perpendicular directions. In assuming isotropic material, we shall of course
. ' exclude the treatment of wooden structures.
~ (5) The displacements and strains are small, i.e., the displacement components
.. of all points of the body during deformauon are very small in comparison with its
original dimensions, and the strain componems and therotations of all line elements
are much smaller than unity. Thus, when we formulate the equilibrium equations
relevant to the deformed state, we may use the lengths and angles of the body
“before deformation. In addition, when we formulate the geometrical_equations
-involving strains and displacements, we may neglect the squares and products of
the small quantities. These two measures are necessary to linearize the algebraic
and differential equations in elasticity for their easier solution.

- 1.4 PROBLEMS

l 4.1 Discuss the applxcablmy of solutions in elasticity to concrete and remforced
concrete structures:

{ 42 stcuss the applicability of soluuons in elasuelty to soil and rock foun-
ions. .




