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Preface

This book is based on a course given at Cornell University and intended
primarily for second-year graduate students. The purpose of the course was
to introduce students who knew a little algebra and topology to a subject in
which there is a very rich interplay between the two. Thus I take neither a
purely algebraic nor a purely topological approach, but rather I use both
algebraic and topological techniques as they seem appropriate.

The first six chapters contain what I consider to be the basics of the subject.
The remaining four chapters are somewhat more specialized and reflect my
own research interests. For the most part, the only prerequisites for reading
the book are the elements of algebra (groups, rings, and modules, including
tensor products over non-commutative rings) and the elements of algebraic
topology (fundamental group, covering spaces, simplicial and CW-com-
plexes, and homology). There are, however, a few theorems, especially in
the later chapters, whose proofs use slightly more topology (such as the
Hurewicz theorem or Poincaré duality). The reader who does not have the
required background in topology can simply take these theorems on faith.

There are a number of exercises, some of which contain results which are
referred to in the text. A few of the exercises are marked with an asterisk to
warn the reader that they are more difficult than the others or that they require
more background.

I am very grateful to R. Bieri, J-P. Serre, U. Stammbach, R. Strebel, and
C. T. C. Wall for helpful comments on a preliminary version of this book.



Notational Conventions

All rings (including graded rings) are assumed to be associative and to have an
identity. The latter is required to be preserved by ring homomorphisms.
Modules are understood to be left modules, unless the contrary is explicitly
stated. Similarly, group actions are generally understood to be left actions.

If a group G acts on a set X, I will usually write X/G instead of G\ X for the
orbit set, even if G is acting on the left. One exception to this concerns the
notation for the set of cosets of a subgroup Hin a group G. Here we are talking
about the left or right translation action of H on G, and 1 will always be
careful to put the H on the appropriate side. Thus G/H = {gH:g € G} and
H\G = {Hg:g € G}.

A symbol such as

Y, f(9)

ge G/H

indicates that f is a function on G such that f(g) depends only on the coset gH
of g; the sum is then taken over a set of coset representatives.
Finally, I use the “ topologists’ notation”

Z, = Z/nZ;

in particular, Z, denotes the integers mod p, not the p-adic integers.

vi
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Introduction

The cohomology theory of groups arose from both topological and algebraic
sources. The starting point for the topological aspect of the theory was the
work of Hurewicz [1936] on “aspherical spaces.” About a year earlier,
Hurewicz had introduced the higher homotopy groups n, X of a space X
(n = 2). He now singled out for study those path-connected spaces X whose
higher homotopy groups are all trivial, but whose fundamental group
n = n,; X need not be trivial. Such spaces are called aspherical.

Hurewicz proved, among other things, that the homotopy type of an
aspherical space X is completely determined by its fundamental group 7. In
particular, the homology groups of X depend only on =; it is therefore reason-
able to think of them as homology groups of m. [ This terminology, however, was
not introduced until the 1940’s.] Throughout the remainder of this introduc-
tion, then, we will write H,_ = for the homology of any aspherical space with
fundamental group #. (Similarly, we could define homology and cohomology
groups of m with arbitrary coefficients.) As a simple example, note that
H,(Z ® Z) = Z. [Take X to be the torus.] Although Hurewicz considered
only the uniqueness and not the existence of aspherical spaces, there does in
fact exist an aspherical space with any given group as fundamental group.
Thus our topological definition of group homology applies to all groups

For any group n we obviously have Hyn = Z and H,n = =, the latter
being the abelianization of =, i.e., # modulo its commutator subgroup. For
n 2 2, however, it is by no means clear how to describe H,n algebraically.
The first progress in this direction was made by Hopf [1942], who expressed
H, n in purely algebraic terms, and who gave further evidence of its impor-
tance in topology by proving the following theorem: for any path-connected
space X with fundamental group =, there is an exact sequence

(0.1) 7[2X“VH2X—’H27[—'0.



2 Introduction

[To put this result in perspective, one should recall that Hurewicz had
introduced homomorphisms h,:n,X - H,X (n > 2) and had shown that
h, is an isomorphismif 7; X = O fori < n. In particular, h, is an isomorphism
if # = m, X = 0. When = is non-trivial, however, h, is in general neither in-
jective nor surjective, and Hopf’s theorem gives a precise description, in
terms of x, of the extent to which surjectivity fails.]

Hopf’s description of H, =, incidentally, went as follows: Choose a presen-
tation of 7 as F/R, where F is free and R < F; then

0.2) H,n = Rn[F, FJ/[R, F],

where [A, B] for A, B = F denotes the subgroup generated by the com-
mutators [a, b] = aba™'b~' (a€ A, be B).

Following Hopf’s paper there was a rapid development of the subject by
Eckmann, Eilenberg-MacLane, Freudenthal, and Hopf. (See MacLane
[1978] for some comments about this development.) In particular, one had
by the mid-1940’s a purely algebraic definition of group homology and
cohomology, from which it became clear that the subject was of interest to
algebraists as well as topologists. Indeed, the low-dimensional cohomology
groups were seen to coincide with groups which had been introduced much
earlier in connection with various algebraic problems. H!, for instance,
consists of equivalence classes of “crossed homomorphisms” or “deriva-
tions.” And H? consists of equivalence classes of “factor sets,” the study of
which goes back to Schur [1904], Schreier [1926], and Brauer [1926]. Even
H? had appeared in an algebraic context (Teichmiiller [1940]). These are
the algebraic sources of group cohomology referred to at the beginning of
this introduction. (Of course, there had been nothing in this algebraic work
to suggest that there was an underlying “homology theory”; this had to wait
for the impetus from topology.)

It is not surprising, in view of this history, that the subject of group co-
homology offers possibilities for a great deal of interaction between algebra
and topology. For instance a “transfer map,” motivated by a classical
group-theoretic construction due to Schur [ 1902], was introduced into group
cohomology (Eckmann [1953], Artin-Tate [unpublished]) and from there
into topology, where it has become an important tool. Another example is
the theory of Euler characteristics of groups. This theory was motivated by
topology, but it has applications to group theory and number theory.

Our approach to the subject will be as follows: We begin in Chapters 1
and II by defining H, = from the point of view of “homological algebra.”
This is the point of view which had evolved by the end of the 1940s. The
topological motivation, however, will always be kept in sight, and we will
immediately obtain the topological interpretation of H,n in terms of
aspherical spaces. In particular, we will prove 0.1 and 0.2.

Chapter III contains more homological algebra, involving homology and
cohomology with coefficients. These arise naturally in applications, both in
algebra and topology. They are also an important technical tool, since they
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make it possible to prove theorems by “dimension-shifting.” In Chapter IV
we treat the theory of group extensions, which involves the crossed homo-
morphisms and factor sets mentioned above,

Chapter V introduces cup and cap products (motivated by topology), and
these are then used in Chapter VI in the study of the cohomology of finite
groups. Much of the material in Chapter VI (such as the “Tate cohomology
theory”) was originally motivated by algebra (class field theory), but it
turns out to be related to topological questions as well, such as the study of
groups acting freely on spheres.

In Chapter VII we introduce spectral sequence techniques, which are
used extensively in the remaining chapters. The reader is not expected to
have previously seen spectral sequences; I give a reasonably self-contained
treatment, omitting only some routine (but tedious) verifications.

Beginning with Chapter VIII the emphasis is on infinite groups, with the
most interesting examples being groups of integral matrices. In Chapter VIII
we discuss various finiteness conditions which can be imposed on such a
group to guarantee that the homology has nice properties. Chapter IX
treats Euler characteristics, which can be defined under suitable finiteness
hypotheses. This theory, as we mentioned above, has interesting connections
with number theory. Finally, Chapter X develops the “Farrell cohomology
theory,” which is a generalization to infinite groups of the Tate cohomology
theory for finite groups.



CHAPTER 1
Some Homological Algebra

0 Review of Chain Complexes

We collect here for ease of reference some terminology and results concerning
chain complexes. Much of this will be well-known to anyone who has studied
algebraic topology. The reader is advised to skip this section (or skim it
lightly) and refer back to it as necessary. We will omit some of the proofs;
these are either easy or else can be found in standard texts, such as Dold
[1972], Spanier [1966], or MacLane [1963].

Let R be an arbitrary ring. By a graded R-module we mean a sequence
C = (C,)ncz of R-modules. If x € C,,, then we say x has degree n and we write
deg x = n. A map of degree p from a graded R-module C to a graded R-
module C' is a family f = (f,: C, = C, )nez of R-module homomorphisms;
thus deg(f(x)) = deg f + deg x. A chain complex over R is a pair (C, d)
where C is a graded R-module and d: C — C is a map of degree — 1 such that
d* = 0. The map d is called the differential or boundary operator of C. We
often suppress d from the notation and simply say that C is a chain complex.
We define the cycles Z(C), boundaries B(C), and homology H(C) by Z(C) =
ker d, B(C) = im d, and H(C) = Z(C)/B(C). These are all graded modules. *

One often comes across. graded modules C with an endomorphism d of
square zero such that d has degree + 1 instead of — 1. In this case it is custom-
ary to use superscripts instead of subscripts to denote the grading, so that
C =(C"z and d = (d": C" - C"*1). Such a pair (C, d) is called a cochain
complex. There is no essential difference between chain complexes and
cochain complexes, since we can always convert one to the other by setting
C, = C™". We will therefore confine ourselves, for the most part, to discussing
chain complexes, it being understood that everything applies to cochain
complexes by reindexing as above. [Note, however, that there is a difference
when we consider non-negative complexes, i, complexes such that C,

4



0 Review of Chain Complexes 5

[or C"] = O for n < 0; if the differential is thought of as going from left to
right, then a non-negative chain complex extends indefinitely to the left,
whereas a non-negative cochain complex extends indefinitely to the right.] In
discussing cochain complexes, one often prefixes “co” to much of the ter-
minology; thus d may be called a coboundary operator, and we have co-
cycles Z(C), coboundaries B(C), and cohomology H(C) = (H(C)),cz-

If (C,d) and (C', d") are chain complexes, then a chain map from Cto C' isa
graded module homomorphism f: C — C’ of degree 0 such that d'f = fd. A
homotopy h from a chain map f to a chain map g is a graded module homo-
morphism h:C — C’ of degree 1 such that d'h + hd = f — g. We write
f =~ g and say that f'is homotopic to g if there is a homotopy from f'to g.

(0.1) Proposition. A chainmap f : C —» C' induces a map H(f): H(C) — H(C"),
and H(f) = H(g) if f ~ g. O

The abelian group of homotopy classes of chain maps C — C’ will be
denoted [C, C’]. It is often useful to interpret [C, C’] as the 0-th homology
group of a certain “function complex” H#omg(C, C’), defined as follows:
Homp(C, C'), is the set of graded module homomorphisms of degree n from
C to C' [thus H#emge(C, C'), = [z Homg(C,, C,.,)], and the boundary
operator D,: Homp(C, C), = Homg(C, C'),-, is defined by D,(f) =
d'f — (= 1)"fd. [The sign here makes D2 = 0. It is also consistent with other
standard sign conventions, cf. exercise 3 below.] Note that the 0-cycles are
precisely the chain maps C — C’, and the 0-boundaries are the null-homo-
topic chain maps. Thus Hy(#emg(C, C)) = [C, C']. More generally, there
is an interpretation of H,(o#omg(C, C')) in terms of chain maps. Consider
the complex (Z"C, Z'd) defined by (£'C), = C,_,, £'d = (—1)"d; this
complex is called the n-fold suspension of C. [If n = 1, we write £C instead
of £'C.] Let [C,C], =[Z"C,C']. Then we have H,(Homg(C, C)) =
[C,C),. Theelementsof [ , 1, are called homotopy classes of chain maps
of degree n.

A chain map f: C — C'is called a homotopy equivalence if there is a chain
mapf’:C' - Csuchthatf'f ~ idcand ff’ =~ id. . And a chain map fis called
a weak equivalence if H(f): H(C) - H(C’) is an isomorphism.

(0.2) Proposition. Any homotopy equivalence is a weak equivalence. d

A chain complex C is called contractible if it is homotopy equivalent to
the zero complex, or, equivalently, if id, ~ 0. A homotopy from id. to 0 is
called a contracting homotopy. Any contractible chain complex is acyclic, i.e.,
H(C)=0.

(0.3) Proposition. C is contractible if and only if it is acyclic and each short
exact sequenceQ - Z,,, & C,4y 4Z,-50 splits, where d is induced by d.

ProoF. If his a contracting homotopy, then (h]| Z): Z — C splits the surjection
d: C — Z. Conversely, suppose we have a splitting s: Z — C, whence a
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graded module decomposition C = ker d @ im s = Z @ im 5. We then get
a contracting homotopy h: C - C by setting h|Z = s and hlims =0. O

(0.4) Proposition. A short exact sequence 0 — C' 4 C 5 C" >0 of chain
complexes gives rise to a long exact sequence in homology:

ro o H(C) =B H(C) FH H(C) S H,((C) > .
The “connecting homomorphism™ & is natural, in the sense that a commuta-
tive diagram :
0 »C' —C > C" >0

0—— E——E——E'——0

with exact rows yields a commutative square

H(C") ——H,_(C)

L

H,(E") —— H,_,(E). g

(0.5) Corollary. The inclusion i: C' — C is a weak equivalence if and only if
C" is acyclic. O

This shows that the cokernel C” of i is the appropriate object to consider
if we want to measure the “difference” between H(C) and H(C’). We now
wish to define a “homotopy-theoretic™ cokernel for an arbitrary chain map
f:C' - C, which plays the same role as the cokernel in the case of an
inclusion: The mapping cone of f : (C',d') — (C, d) is defined to be the complex
(C”, d") with C" = C @ ZC' (as a graded module)-and d"(c, ¢') = (dc + fc',
—d'c’). In matrix notation, we have

)
4 ‘(o Ed’)'

See exercise 2 below for the motivation for this definition.

(0.6) Propeosition. Let f: C' = C be a chain map with mapping cone C”". There
is a long exact homology sequence

- = H(C) 5 H(C) = H,(C") — H,((C) > -+
In particular, f is a weak equivalence if and only if C" is acyclic.

PROOE. There is a short exact sequence 0 - C = C” — XC’' — 0; now apply
(0.4). By checking the definition of the connecting homomorphism H,(XC")
— H,_(C), one finds that it equals H,_,(f): H,_ (C") = H,_ (C). O
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The mapping cone is also useful for studying homotopy equivalences, not
just weak equivalences:

(0.7) Proposition. A chain map f : C' — C is a homotopy equivalence if and only
if its mapping cone C" is contractible.

PRrOOF. A straightforward computational proof can be found in the standard
references (or can be supplied by the reader). For the sake of variety, we will
sketch a conceptual proof. Suppose first that C” is contractible. One then
checks easily that the function complex H#omg(D, C”) is contractible for any
complex D; in particular, it is acyclic. One also checks that #esmegz(D, C") is
isomorphic to the mapping cone of #omeg(D, [ ): Homg(D, C') — Homg(D, C).
It therefore follows from (0.6) that #esmee(D, f) is a weak equivalence. Looking
at H,, we deduce that finduces an isomorphism [D, C'] — [D, C] for any D,
hence f is a homotopy equivalence by a standard argument. Conversely,
suppose fis a homotopy equivalence. Then one shows easily that #omg(D,f):
Homg(D, C') — Homg(D, C) is a homotopy equivalence, 5o its mapping cone
Homg(D, C") is acyclic by 0.6. In particular, [D, C"] = 0 for any D, and this
implies that C” is contractible. 0l

Finally, we recall briefly the Kiinneth and universal coefficient theorems,
If (C, d) (resp. (C’, d)) is a chain complex of right (resp. left) R-modules, then
we define their tensor product C ® g C' by (C ®g C)y = @t g=n C,®rC,,
with differential D given by D(c ® ¢’) = dc ® ¢’ + (— 1)*#c @ d'c’force C,
¢ € C'. The sign here can be remembered by means of the following sign
convention: When something of degree p is moved past something of degree g,
the sign (— 1) is introduced. [In the present case, the differential, which is of
degree — 1, is moved past c, so we get the sign (— 1) ~9%¢ = (—1)%*#*.] Note
that C ®x C’ is simply a complex of abelian groups for general R, but it is a
complex of R-modules if R is commutative.

(0.8) Proposition (Kiinneth Formula). Let R be a principal ideal domain and
let C and C' be chain complexes such that C is dimension-wise free. There are
natural exact sequences

0~ P Hy(C)®g H,-(C) = H(C ®r C)

peZ

> @ Tor’(H(C), Hu- p-1(C)) > 0

peZ
and
0- l_[ Ethl((Hp(C)’ Hp+n+ I(C,)) I H"(.#MR(C, C,))
pel

— [THomg(H,(C), H,..(C?) -0,

pel

and these sequences split. O



