S T R T T ——
Ruby BRIELE ($ER)

Ruby
Best Pracnces

O’RE|LLY® Gregory T. Broun %&
% K% HKRi Yukibiro Matsumoto fF

Programming/Ruby

O’REILLY"

Ruby S{EEEk ($/ENkR)

TRAEB 4R E B EMMEARubyRAGIG? (Rubyf sk
Be) IFE& ABER LT FKIBHEME HRuby IR T 5 BT ifE
% %M, AP HRubyf HPrawnfH & E T, Wik
1] U BB fal i FH R uby 4 5 P 36 19 B2 B2 % 0 R Gse 2 18
. WA, LSRR BCUm R B fE A, AR
E'”ﬂ%‘, EREAME, @dA, WESFBmAES A%
P E, FRGREDERIRL, ARFZH MG RINE,

(Rubyfx fESCER) K HBHIR .

o HfiERubyfRAD SR B 45 & s h &

o AR R A Ruby REDHHE I T b7 A%, Bilan
BTSSR N A

o BREMRR SRR AR A, LR AN A 5 M) &
o 21 LR R 1 R 4 S B AR

o T CAMCERI SRR I K R, AE E N E SR
o ERRAIT LS R AR LA R R A0 (i R A

o FIFRuby %5 = HtE b SRR

ARSI AL A A XM IR AR | 15 vh R R R 1 LR 5

By T 2ETA, (RubyReHESEER) FEFEHEIRS: S anfalffix
MHEE . EIESRERRB.

Ti%it

\

www.oreilly.com

O'Reilly Media, Inc. 424X & #1 X % th JAt th R

LHARMRTFETEARKNEREN (ERLFETEEE. RIVSITERNTESEHEK) HERT

This Authorized Edition for sale only in the territory of People's Republic of China (excluding

Hong Kong, Macao and Taiwan)

“RR—FRAZSEINEE, &
REFFRAREBEEMRELE, 7
—Brad Ediger, Madriska
Media GroupHJ4&5i# 7T % # ,
[al it /& (Advanced Rails)
(O'Reilly) HITEH

‘RTHAXBE—FEEET, €
AMIHRWMFAERARuby, EHS
RMAERMERE. S6IRuby
EFENEREBZBL—K
(RubyfR{ELE) . ”
Jeremy McAnally,
ENTPH X%, [RIEE
{Ruby in Practice)
—HHEE

“HRETRE, EIRAEXER, R
—EFB TR RS RubyRiZEE
hRFEIG. 7
——James Edward Gray II,
5% KRuby 1.9)
CSVIRMEERINER

(Manning)

Gregory T. Brown/g& FEE ki M 41
B H I —Ruby Z4FE, by
K % Bl i) 564 T S5 Ruby i &
X B BKRGEEE L, i
RuportfJ 7 1E#, I H&Prawnfy
E# , ZRuby FE # H R 4 B
PDF3(#Y,

Rubyif & Bl E R AITAAAES
({3528

ISBN 978-7-5641-1935-5

{1

87 564 111193

Eft: 48.007C

Ruby 52 £ SE & (w i)
Ruby Best Practices

Gregory Brown

foreword by Yukibiro “Matz” Matsumoto

O’REILLY"

Beijing « Cambridge + Farnham + Koln + Sebastopol « Taipei * Tokyo

O’Reilly Media, Inc. 842 & & K 4 & JRAt 3R

R KFH R

BEEERE (CIP) HiF

Ruby BefEik: %3/ (%) A (Brown, G.T.)
. A —ER: REKFEHRHE, 2010.1

#54J857. Ruby Best Practices

ISBN 978-7-5641-1935-5

I R I A IO SRS - BRFGH - 33X
IV .TP393.09

rh E R A< B 4518 CIP $eiii+= (2009) 48 205661 5

AN IS E 2 e Tk
B 10-2009-246 2

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

¥ TR By O'Reilly Media, Inc. & & 2009,

ELHER G A B K F b ALk & 2009, LB PR ATk RR A4 B AR Bk R Ao B A BT A A
—— O'Reilly Media, Inc. #5#% 7T,

BALFTH , A FHEHT, AHOETRSfe L RIFUETH XFH,

Ruby (£ LE: (RZENRR)
MR & fT: REXRFEHBRT
M Hb: FERHMH2S B4R : 210096
MR AT &
A Bk . http://press.seu.edu.cn
B, FiRfE: press@seu.edu.cn
EN Rl : 45 i EDRIA R 2% F)
: T8TZE Kk x 980K 16 FF
: 20.75 EI5k
. 349 FF
. 20104 1 A 1k
: 2010 4 1 HEE 1 ik EN R
: ISBN 978-7-5641-1935-5
. 1~1600 i
#r. 48.00 ¢ (i)
FHEBHEANEREAE, FHESREREHHER. BIF ((FH). 025-83792328

DHIE SN
BE din S5 5§ BE R M

Preface

Some programming languages excel at turning coders into clockwork oranges. By
enforcing rigid rules about how software must be structured and implemented, it is
possible to prevent a developer from doing anything dangerous. However, this comes
at a high cost, stifling the essential creativity and passion that separates the masterful
coder from the mediocre. Thankfully, Ruby is about as far from this bleak reality as
you can possibly imagine.

As a language, Ruby is designed to allow developers to express themselves freely. It is
meant to operate at the programmer’s level, shifting the focus away from the machine
and toward the problem at hand. However, Ruby is highly malleable, and is nothing
more than putty in the hands of the developer. With a rigid mindset that tends to
overcomplicate things, you will produce complex Ruby code. With a light and unen-
cumbered outlook, you will produce simple and beautiful programs. In this book, you’ll
be able to clearly see the difference between the two, and find a clear path laid out for
you if you choose to seek the latter.

A dynamic, expressive, and open language does not fit well into strict patterns of proper
and improper use. However, this is not to say that experienced Rubyists don’t agree
on general strategies for attacking problems. In fact, there is a great degree of com-
monality in the way that professional Ruby developers approach a wide range of chal-
lenges. My goal in this book has been to curate a collection of these techniques and
practices while preserving their original context. Much of the code discussed in this
book is either directly pulled from or inspired by popular open source Ruby projects,
which is an ideal way to keep in touch with the practical world while still studying what
it means to write better code.

* If you were looking for a book of recipes to follow, or code to copy and paste, you’ve
come to the wrong place. This book is much more about how to go about solving
problems in Ruby than it is about the exact solution you should use. Whenever some-
one asks the question “What is the right way to do this in Ruby?”, the answer is always
“It depends.” If you read this book, you’ll learn how to go with the flow and come up
with good solutions even as everything keeps changing around you. At this point, Ruby
stops being scary and starts being beautiful, which is where all the fun begins.

xi

Audience

This book isn’t really written with the Ruby beginner in mind, and certainly won’t be
very useful to someone brand new to programming. Instead, I assume a decent technical
grasp of the Ruby language and at least some practical experience in developing soft-
ware with it. However, you needn’t be some guru in order to benefit from this book.

The most important thing is that you actually care about improving the way you write
Ruby code.

As long as you have at least an intermediate level of experience, reading through the
book should be enjoyable. You’ll want to have your favorite reference book handy to
look things up as needed. Either The Ruby Programming Language (http://oreilly.com/
catalog/9780596516178/) by David Flanagan and Yukihiro Matsumoto (O’Reilly) or
Programming Ruby, Third Edition, by Dave Thomas (Pragmatic Bookshelf) should do
the trick.

Itis also important to note that this is a Ruby 1.9 book. It makes no attempt to provide
notes on the differences between Ruby 1.8 and 1.9 except for in a brief appendix de-
signed specifically for that purpose. Although many of the code samples will likely work
with little or no modifications for earlier versions of Ruby, Ruby 1.9 is the way forward,
and [have chosen to focus on it exclusively in this book. Although the book may still
be useful to those maintaining legacy code, it is admittedly geared more toward the
forward-looking crowd.

About This Book

This book is designed to be read by chapter, but the chapters are not in any particular
order. The book is split into two parts, with eight chapters forming its core and three
appendixes included as supplementary material. Despite the fact that you can read
these topics in any order that you’d like, it is recommended that you read the entire
book. Lots of the topics play off of each other, and reading through them all will give
you a solid base in some powerful Ruby techniques and practices.

Each of the core chapters starts off with a case study that is meant to serve as an intro-
duction to the topic it covers. Every case study is based on code from real Ruby projects,
and is meant to provide a practical experience in code reading and exploration. The
best way to work through these examples is to imagine that you are working through
a foreign codebase with a fellow developer, discussing the interesting bits as you come
across them. In this way, you’ll be able to highlight the exciting parts without getting
bogged down on every last detail. You are not expected to understand every line of
code in the case studies in this book, but instead should just treat them as useful
exercises that prepare you for studying the underlying topics.

Once you've worked your way through the case study, the remainder of each core
chapter fills in details on specific subtopics related to the overall theme. These tend to

xii | Preface

mix real code in with some abstract examples, preferring the former but falling back to
the latter when necessary to keep things easy to understand. Some code samples will
be easy to run as they are listed; others might only be used for illustration purposes.
This should be easy enough to figure out as you go along based on the context.
wholeheartedly recommend running examples when they’re relevant and stopping fre-
quently to conduct your own explorations as you read this book. The sections are kept
somewhat independent of one another to make it easy for you to take as many breaks
as you need, and each wraps up with some basic reminders to refresh your memory of
what you just read.

Although the core chapters are the essential part of this book, the appendixes should
not be overlooked. You’ll notice that they’re slightly different in form and content from
the main discussion, but maintain the overall feel of the book. You’ll get the most out
of them if you read them after you've completed the main part of the book, as they tend
to assume that you’re already familiar with the rest of the content.

That’s pretty much all there is to it. The key things to remember are that you aren’t
going to get much out of this book by skimming for content on a first read, and that
you should keep your brain engaged while you work your way through the content. If
you read this entire book without writing any code in the process, you’ll probably rob
yourself of the full experience. So pop open your favorite editor, start with the topic
from the chapter listing that interests you most, and get hacking!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,

Preface | xiii

writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Ruby Best Practices by Gregory Brown.
Copyright 2009 Gregory Brown, 978-0-596-52300-8.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf .. When you see a Safari® Books Online icon on the cover of your favorite
alari technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

O’Reilly has a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596523008/

Gregory maintains a community-based page for this book at:
http:/frubybestpractices.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xiv | Preface

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http:/fwww.oreilly.com

Acknowledgments

Over the course of writing Ruby Best Practices, 1 was thoroughly supported by my
friends, family, and fellow hackers. I want to thank each and every one of the folks
who’ve helped out with this book, because it would not exist without them.

This book did not have a typical technical review process, but instead was supported
by an excellent advisory board whose members participated in group discussion and
the occasional review as each chapter was released. These folks not only helped catch
technical errors, but helped me sketch out the overall vision for how the book should
come together as well. Participants included James Britt, Francis Hwang, Hart Larew,
Chris Lee, Jeremy McAnally, and Aaron Patterson.

Rounding out the group was the best pair of guiding mentors I could hope for, Brad
Ediger and James Edward Gray II. Both have published Ruby books, and have worked
with me extensively on a number of Ruby projects. James and Brad were both instru-
mental in producing this book, and to my career as a software developer in general. I
have learned a ton from each of them, and thanks to their help with RBP, I can now
pass their knowledge on to you.

Much of the source code in this book comes from the open source Ruby community.
Although I talk about my own projects (Prawn and Ruport) a lot, most of the code 1
show is actually from other contributors or at least originated from good ideas that
came up in mailing list discussions, feature requests, and so on. In addition to these
two projects, [also have benefited from studying a whole slew of other gems, including
but not limited to: activesupport, builder, camping, faker, flexmock, gibberish, haml,
highline, lazy, nokogiri, pdf-writer, and rspec. Great thanks go out to all of the devel-
opers of these projects, whom I've tried to acknowledge directly wherever I can
throughout the text.

Of course, without Yukihiro Matsumoto (Matz), we wouldn’t have Ruby in the first
place. After writing this book, I am more impressed than ever by the language he has
designed. If I'm lucky, this book will help show people just how beautiful Ruby can be.

Producing the technical content for this work was daunting, but only part of the overall
picture. My editor, Mike Loukides, and the entire O’Reilly production team have made
publishing this book a very comfortable experience. After overcoming major fears
about the hurdles of working with a mainstream publisher, I've found the folks at
O’Reilly to be helpful, accommodating, and supportive. It is especially nice that this
book will become an open community resource less than a year after it prints. This

Preface | xv

measure is one I hope to see other technical book publishers adopt, and one I'm very
thankful that O’Reilly was open to.

Finally, I need to thank the folks who’ve helped me keep my sanity while working on
this huge project. My future wife, Jia Wu, has been amazingly supportive of me, and
helped make sure that I occasionally ate and slept while working on this book. On the
weekends, we’d usually escape for an bit and spend time with my close friends and
family. Though they didn’t have anything to do with the project itself, without Pete,
Paul, Mom, Dad, and Vinny, I doubt you’d be reading this book right now. Thanks to
all of you, even if you’ll never need to read this book.

So many people helped out in countless different ways, that I'm sure I've missed some-
one important while compiling this list. To make sure these folks get their well-deserved
credit, please keep an eye on the acknowledgments page at hitp://rubybestpractices
.com and let me know if there is someone who needs to be added to the list. But for
now, if I've failed to list you here, thank you and please know that I’ve not forgotten
what you’ve done to help me.

xvi | Preface

Foreword

In 1993, when Ruby was born, Ruby had nothing. No user base except for me and a
few close friends. No tradition. No idioms except for a few inherited from Perl, though
I regretted most of them afterward.

But the language forms the community. The community nourishes the culture. In the
last decade, users increased—hundreds of thousands of programmers fell in love with
Ruby. They put great effort into the language and its community. Projects were born.
Idioms tailored for Ruby were invented and introduced. Ruby was influenced by Lisp
and other functional programming languages. Ruby formed relationships between
technologies and methodologies such as test-driven development and duck typing.

This book introduces a map of best practices of the language as of 2009. I've known
Greg Brown for years, and he is an experienced Ruby developer who has contributed
a lot of projects to the language, such as Ruport and Prawn. [am glad he compiled his
knowledge into this book.

His insights will help you become a better Ruby programmer.

—Yukihiro “Matz” Matsumoto
June 2009, Japan

Table of Contents

Foreword o ix
Preface ..o, Xi
1. Driving Code Through Testsooiiiiiiiiiiiiiniiiiiieeeeeeennnn. 1
A Quick Note on Testing Frameworks 2
Designing for Testability 2
Testing Fundamentals 10
Well-Focused Examples 10
Testing Exceptions 11

Run the Whole Suite at Once 13
Advanced Testing Techniques 14
Using Mocks and Stubs 14
Testing Complex Output 22
Keeping Things Organized 26
Embedding Tests in Library Files 27

Test Helpers 27
Custom Assertions 29
Conclusions 30

2. Designing Beautiful APIScooiiiiniiiiiiiiiiiiiiiiiie e 3
Designing for Convenience: Ruport’s Table() feature 31
Ruby’s Secret Power: Flexible Argument Processing 35
Standard Ordinal Arguments 36
Ordinal Arguments with Optional Parameters 36
Pseudo-Keyword Arguments 37
Treating Arguments As an Array 38
Ruby’s Other Secret Power: Code Blocks 40
Working with Enumerable 41

Using Blocks to Abstract Pre- and Postprocessing 43
Blocks As Dynamic Callbacks 45
Blocks for Interface Simplification 47

Avoiding Surprises
Use attr_reader, attr_writer, and attr_accessor
Understand What method? and method! Mean
Make Use of Custom Operators

Conclusions

Mastering the DynamicToolkitcooiviininina.s,

BlankSlate: A BasicObject on Steroids
Building Flexible Interfaces
Making instance_eval() Optional
Handling Messages with method_missing() and send()
Dual-Purpose Accessors
Implementing Per-Object Behavior
Extending and Modifying Preexisting Code
Adding New Functionality
Modification via Aliasing
Per-Object Modification
Building Classes and Modules Programmatically
Registering Hooks and Callbacks
Detecting Newly Added Functionality
Tracking Inheritance
Tracking Mixins
Conclusions

Text Processing and File Managementccevviiinnnn

Line-Based File Processing with State Tracking
Regular Expressions
Don’t Work Too Hard
Anchors Are Your Friends
Use Caution When Working with Quantifiers
Working with Files
Using Pathname and FileUtils
The tempfile Standard Library
Automatic Temporary Directory Handling
Collision Avoidance
Same Old I/O Operations
Automatic Unlinking
Text-Processing Strategies
Advanced Line Processing
Atomic Saves
Conclusions

48
48
50
53
55

......... 57

57
62
63,
65
69
70
74
75
79
81
84
88
89
91
93
96

vi | Table of Contents

5. Functional Programming Techniquesccoivviiiiinininnnnnns. 121

Laziness Can Be a Virtue (A Look at lazy.rb) 121
Minimizing Mutable State and Reducing Side Effects 129
Modular Code Organization 133
Memoization 138
Infinite Lists 145
Higher-Order Procedures 149
Conclusions 152
6. WhenThingsGoOWIONgocvnvniiiiiiiiiiiiiii i iiiiiiiieennenans 153
A Process for Debugging Ruby Code 153
Capturing the Essence of a Defect 157
Scrutinizing Your Code 160
Utilizing Reflection 160
Improving inspect Output 162
Finding Needles in a Haystack 166
Working with Logger 168
Conclusions ' 176
7. Reducing Cultural Barrierscoooiveiiiiiniiiiiineirieenienennnn. 177
m17n by Example: A Look at Ruby’s CSV Standard Library 178
Portable m17n Through UTF-8 Transcoding 182
Source Encodings 183
Working with Files 183
Transcoding User Input in an Organized Fashion 185
ml7n in Standalone Scripts 188
Inferring Encodings from Locale 189
Customizing Encoding Defaults 191
ml7n-Safe Low-Level Text Processing 193
Localizing Your Code 195
Conclusions 204
8. Skillful Project Maintenanceccooviiiiiiiiiiniiiiiieniiennenn. 205
Exploring a Well-Organized Ruby Project (Haml) 205
Conventions to Know About 210
What Goes in a README 211
Laying Out Your Library 213
Executables 216
Tests 216
Examples 217
API Documentation via RDoc 219
Basic Documentation Techniques and Guidelines 220
Controlling Output with RDoc Directives 222

Table of Contents | vii

The RubyGems Package Manager
Writing a Gem::Specification
Working with Dependencies

Rake: Ruby’s Built-in Build Utility

Conclusions

A. Writing Backward-CompatibleCodecoovvveevevnennn... ..
B. Leveraging Ruby’s Standard Libraryc.cvveneeinnininnnn.,

C. RubyWorst Practicescoviiuiniiiiiniiiiiieieeeernnnnnns

227
228
231
234
237

viii | Table of Contents

CHAPTER 1
Driving Code Through Tests

If you’ve done some Ruby—even a little bit—you have probably heard of test-driven
development (TDD). Many advocates present this software practice as the “secret key”
to programming success. However, it’s still a lot of work to convince people that writing
tests that are often longer than their implementation code can actually lower the total
time spent on a project and increase overall efficiency.

In my work, I've found most of the claims about the benefits of TDD to be true. My
code is better because I write tests that document the expected behaviors of my software
while verifying that my code is meeting its requirements. By writing automated tests, I
can be sure that once I narrow down the source of a bug and fix it, it’ll never resurface
without me knowing right away. Because my tests are automated, I can hand my code
off to others and mechanically assert my expectations, which does more for me than a
handwritten specification ever could do.

However, the important thing to take home from this is that automated testing is really
no different than what we did before we discovered it. If you’ve ever tried to narrow
down a bug with a print statement based on a conditional, you’ve already written a
primitive form of automated testing:

if foo != "blah"

puts “I expected 'blah’ but foo contains #{foo}"
end

If you’ve ever written an example to verify that a bug exists in an earlier version of code,
but not in a later one, you’ve written something not at all far from the sorts of things
you’ll write through TDD. The only difference is that one-off examples do not ade-
quately account for the problems that can arise during integration with other modules.
This problem can become huge, and is one that unit testing frameworks handle quite
well.

Even if you already know a bit about testing and have been using it in your work, you
might still feel like it doesn’t come naturally. You write tests because you see the long-
term benefits, but you usually write your code first. It takes you a while to write your
tests, because it seems like the code you wrote is difficult to pin down behavior-wise.

In the end, testing becomes a necessary evil. You appreciate the safety net, but except
for when you fall, you’d rather just focus on keeping your balance and moving forward.

Masterful Rubyists will tell you otherwise, and for good reason. Testing may be hard,
but it truly does make your job of writing software easier. This chapter will show you
how to integrate automated testing into your workflow, without forcing you to relearn
the troubleshooting skills you’ve already acquired. By making use of the best practices
discussed here, you’ll be able to more easily see the merits of TDD in your own work.

A Quick Note on Testing Frameworks

Ruby provides a unit testing framework in its standard library called minitest/unit. This
library provides a user-level compatibility layer with the popular test/unit library, which
has been fairly standard in the Ruby community for some time now. There are signif-
icant differences between the minitest/unit and test/unit implementations, but as we
won’t be building low-level extensions in this chapter, you can assume that the code
here will work in both minitest/unit and test/unit without modification.

For what it’s worth, I don’t have a very strong preference when it comes to testing
frameworks. I am using the Test::Unit API here because it is part of standard Ruby,
and because it is fundamentally easy to hack on and extend. Many of the existing
alternative testing frameworks are built on top of Test: :Unit, and you will almost cer-
tainly need to have a working knowledge of it as a Ruby developer. However, if you've
been working with a noncompatible framework such as RSpec (http://rspec.info),
there’s nothing wrong with that. The ideas here should be mostly portable to your
framework of choice.

And now we can move on. Before digging into the nuts and bolts of writing tests, we’ll
examine what it means for code to be easily testable, by looking at some real examples.

Designing for Testability

Describing testing with the phrase “Red, Green, Refactor” makes it seem fairly straight-
forward. Most people interpret this as the process of writing some failing tests, getting
those tests to pass, and then cleaning up the code without causing the tests to fail again.
This general assumption is exactly correct, but a common misconception is how much
work needs to be done between each phase of this cycle.

For example, if we try to solve our whole problem all in one big chunk, add tests to
verify that it works, then clean up our code, we end up with implementations that are
very difficult to test, and even more challenging to refactor. The following example
illustrates just how bad this problem can get if you’re not careful. It’s from some payroll
management code I wrote in a hurry a couple of years ago:

2 | Chapter1: Driving Code Through Tests

