‘l CAMBRIDGE
[T} Houk:S gé ';ui' ,ﬁ Hﬁ :B E

(SRIZKR)

wl AMMANN- = QFFUTT

SO
=

INTRODUCTION gabe

Paul Ammann

SOFTWARE TFE e

Jeff Offutt
Mo I A H AR - -MHEASE

China Machine Press

 # R MR B E

R 1 A, e

(Z23ZhR)

Introduction to
Software Testing

QL FSAN L

¥ China Machine Press

Introduction to Software Testing (ISBN 978-0-521-88038-1) by Paul Ammann and Jeff Offutt
first published by Cambridge University Press in 2008.

All rights reserved.

This reprint edition for the People’s Republic of China is published by arrangement with the
Press Syndicate of the University of Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & China Machine Press in 2009.

This edition is for sale in the mainland of China only, excluding Hong Kong SAR, Macao SAR
and Taiwan, and may not be bought for export therefrom.

A5 LM Tk HARAEFOSIRF K22 WA & 1R R . R BEMBY Z2XFRER, &2
HiREBEFR, FMERERGTRPR, TREEN.

SRR A (U ARSI NS, TaEEE, RIMEITREEVESE. 14
Hjnﬂ

I, @RBR.
FHRE@miE JbRT RARITE S AR

EHENEIZS.: EF: 01-2009-4153
EHERSEE (CIP) ¥iF

WEMIREM (E3ChR) / (%) W (Ammann, P.), #E4E (Offutt, J.) . —IbK.
MLBR ik tH ARt , 2009.10

(BHIFRRBE)
F 4R Introduction to Software Testing

ISBN 978-7-11 1-28246-\4

[.8- 0O.ORM- @& I KHF-AWiR-FKX V. TP31L5
T ER A B BECIPHIRZFE (2009) 1612585

PR Tk AR (e HmRE 55 EA#22E HESE 100037)
REHE.: BiRE

AL HTEREEEN RIA R FENRI

20094E10 H %5 1R 5 1 /R ENRY

170mm x 242mm - 21.25E03k

trMES2 . ISBN 978-7-111-28246-4

Efr: 42.005¢C

AWAES, mERET. BRE. 7, AFdRTHIER
i igHEhe. (010) 68326294

tEhREBI1E

XEE UM, FRRKOREEHMESERNERNE, FlEFEXRAE
HARFIEHENTIRRE T 2EHOREE, BIERXHELE, FXEAGBRK
AREBONTSERAREN, MOIKE, EFLAHHES, XEN™LRS
HE RS ERE S, HENER P IIF LR LA} R SR BED
BAisk, AR AENSARSEE, NUERTHRANERE, LB THERA
R, BEEFAME, XAF%EEME, KMMEHFTEEE ANKLETEER.

A, ELRERBMKABRDT, REMHHEIL™ LR ERE, XEWAA
PER AR, XHHENLBEEFR MU HRERVLE, ek, mEFlkEs
HRIXEEFERIE LEREXERE. AREBFEEBRARBRMEIRENIRT, XE
FREEREXUTENBER BT EEBREMRBRAIVLABHM AT LEBE
£240, Bk, SI#HE—#EIMLEHENEA B BREHAENEE F LR REET]
BARAIHESER, e SR, BREIEMHR —RRFERLHZE,

PLBE ok AR AL e B oy L R RIRE “HIREABEFRS . HI9BEFRA,
ey TVEE AURE Tk . BiFEIMABEM L. 282 FHRWSE D,
M1 5Pearson, McGraw-Hill, Elsevier, MIT, John Wiley & Sons, CengageZ:it:
REAHRAFRRELTREVAIERXR, MM AREEMHBEH P %
Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie,
Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham
Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson®¥ K 4 KA —HELBMER, LN “UEIBZEAE" ASFRER, #tikd
#23, IRREE. KEALEAHE, BERRTXEMNBH AR,

“UEHBHEAS” BWHRIE/SA TEANIMEENR LR, BERNNERAR
URE T ERREES, SAFFEREETRENFROIME, mESHE
FHWAHYXEEEREPENEE, AREETRARKBAOPESRIEF. €4, it
BHRZAE" C2HRTEREN R, XEBEEREPRLTRIFOHOM,
HHr 2 ERRAAERBEMMSEBE. KPR “SAFRRBE" fEHh%k
R R 2 KRR BT R,

WBHIEE ., 2BHEM. —REVEE. MERIVER. BHENRE, XSHE
EERMWELEETREMNRIE. MEHBEIREERAT LERBIZNTE T
EMEH S ENREENL, EEFRHESNTEILESOE R ARES A —4
BB, BIMTWEBRERERE, MRM|HOBLERBRIMEBX KK BIRE
BERY., LESHIGDEMARE N RMNOTERHEBEINSKATHEIE, &ITH

L ER YL . www.hzbook.com

B 7B . hzjsj@hzbook.com
BERBIE. (010) 88379604

BRI AFXTHREETHTEHELS
BRBU4RED . 100037 3 £4]

Preface

This book presents software testing as a practical engineering activity, essential to
producing high-quality software. It is designed to be used as the primary textbook
in either an undergraduate or graduate course on software testing, as a supplement
to a general course on software engineering or data structures, and as a resource
for software test engineers and developers. This book has a number of unique
features:

® It organizes the complex and confusing landscape of test coverage criteria with
a novel and extremely simple structure. At a technical level, software testing is
based on satisfying coverage criteria. The book’s central observation is that there
are few truly different coverage criteria, each of which fits easily into one of four
categories: graphs, logical expressions, input space, and syntax structures. This
not only simplifies testing, but it also allows a convenient and direct theoretical
treatment of each category. This approach contrasts strongly with the traditional
view of testing, which treats testing at each phase in the development process
differently.

® Itis designed and written to be a textbook. The writing style is direct, it builds the
concepts from the ground up with a minimum of required background, and it in-
cludes lots of examples, homework problems, and teaching materials. It provides
a balance of theory and practical application, presenting testing as a collection
of objective, quantitative activities that can be measured and repeated. The the-
oretical concepts are presented when needed to support the practical activities
that test engineers follow.

® It assumes that testing is part of a mental discipline that helps all IT professionals
develop higher-quality software. Testing is not an anti-engineering activity, and
itis not an inherently destructive process. Neither is it only for testing specialists
or domain experts who know little about programming or math.

m It is designed with modular, interconnecting pieces; thus it can be used in multi-
ple courses. Most of the book requires only basic discrete math and introductory
programming, and the parts that need more background are clearly marked. By

vi Preface

using the appropriate sections, this book can support several classes, as described
later in the preface.

m It assumes the reader is learning to be an engineer whose goal is to produce the
best possible software with the lowest possible cost. The concepts in this book
are well grounded in theory, are practical, and most are currently in use.

WHY SHOULD THIS BOOK BE USED?

Not very long ago, software development companies could afford to employ pro-
grammers who could not test and testers who could not program. For most of the
industry, it was not necessary for either group to know the technical principles be-
hind software testing or even software development. Software testing in industry
historically has been a nontechnical activity. Industry viewed testing primarily from
the managerial and process perspective and had limited expectations of practition-
ers’ technical training.

As the software engineering profession matures, and as software becomes more
pervasive in everyday life, there are increasingly stringent requirements for software
reliability, maintainability, and security. Industry must respond to these changes by,
among other things, improving the way software is tested. This requires increased
technical expertise on the part of test engineers, as well as increased emphasis on
testing by software developers. The good news is that the knowledge and technol-
ogy are available and based on over 30 years of research and practice. This book
puts that knowledge into a form that students, test engineers, test managers, and
developers can access.

At the same time, it is relatively rare to find courses that teach testing in univer-
sities. Only a few undergraduate courses exist, almost no masters degree programs
in computer science or software engineering require a course in software testing,
and only a few dozen have an elective course. Not only is testing not covered as an
essential part of undergraduate computer science education, most computer science
students either never gain any knowledge about testing, or see only a few lectures
as part of a general course in software engineering.

The authors of this book have been teaching software testing to software en-
gineering and computer science students for more than 15 years. Over that time
we somewhat reluctantly came to the conclusion that no one was going to write
the book we wanted to use. Rather, to get the book we wanted, we would have to
write it.

Previous testing books have presented software testing as a relatively simple
subject that relies more on process than technical understanding of how software
is constructed, as a complicated and fractured subject that requires detailed under-
standing of numerous software development technologies, or as a completely the-
oretical subject that can be mastered only by mathematicians and theoretical com-
puter scientists. Most books on software testing are organized around the phases in
a typical software development lifecycle, an approach that has the unfortunate side
effect of obscuring common testing themes. Finally, most testing books are written
as reference books, not textbooks. As a result, only instructors with prior expertise
in software testing can easily teach the subject. This book is accessible to instructors
who are not already testing experts.

Preface vii

This book differs from other books on software testing in other important ways.
Many books address managing the testing process. While this is important, it is
equally important to give testers specific techniques grounded in basic theory. This
book provides a balance of theory and practical application. This is important in-
formation that software companies must have; however, this book focuses specif-
ically on the technical nuts-and-bolts issues of designing and creating tests. Other
testing books currently on the market focus on specific techniques or activities,
such as system testing or unit testing. This book is intended to be comprehensive
over the entire software development process and to cover as many techniques as
possible.

As stated previously, the motivation for this book is to support courses in soft-
ware testing. Our first target was our own software testing course in our Soft-
ware Engineering MS program at George Mason University. This popular elective
is taught to about 30 computer science and software engineering students every
semester. We also teach PhD seminars in software testing, industry short courses
on specialized aspects, and lectures on software testing in various undergraduate
courses. Although few undergraduate courses on software testing exist, we believe
that they should exist, and we expect they will in the near future. Most testing books
are not designed for classroom use. We specifically wrote this book to support our
classroom activities, and it is no accident that the syllabus for our testing course,
available on the book’s Web site (www.introsoftwaretesting.com), closely follows
the table of contents for this book.

This book includes numerous carefully worked examples to help students and
teachers alike learn the sometimes complicated concepts. The instructor’s resources
include high-quality powerpoint slides, presentation hints, solutions to exercises,
and working software. Our philosophy is that we are doing more than writing a
book; we are offering our course to the community. One of our goals was to write
material that is scholarly and true to the published research literature, but that is
also accessible to nonresearchers. Although the presentation in the book is quite a
bit different from the research papers that the material is derived from, the essen-
tial ideas are true to the literature. To make the text flow more smoothly, we have
removed the references from the presentation. For those interested in the research
genealogy, each chapter closes with a bibliographic notes section that summarizes
where the concepts come from.

WHO SHOULD READ THIS BOOK?

Students who read and use this book will learn the fundamental principles behind
software testing, and how to apply these principles to produce better software,
faster. They will not only become better programmers, they will also be prepared
to carry out high-quality testing activities for their future employers. Instructors
will be able to use this book in the classroom, even without prior practical exper-
tise in software testing. The numerous exercises and thought-provoking problems,
classroom-ready and classroom-tested slides, and suggested outside activities make
this material teachable by instructors who are not already experts in software test-
ing. Research students such as beginning PhD students will find this book to be an
invaluable resource as a starting point to the field. The theory is sound and clearly

viii Preface

presented, the practical applications reveal what is useful and what is not, and the
advanced reading and bibliographic notes provide pointers into the literature. Al-
though the set of research students in software testing is a relatively small audi-
ence, we believe it is a key audience, because a common, easily achievable baseline
would reduce the effort required for research students to join the community of
testing researchers. Researchers who are already familiar with the field will find the
criteria-approach to be novel and interesting. Some may disagree with the pedagog-
ical approach, but we have found that the view that testing is an application of only
a few criteria to a very few software structures to be very helpful to our research.
We hope that testing research in the future will draw away from searches for more
criteria to novel uses and evaluations of existing criteria.

Testers in the industry will find this book to be an invaluable collection of tech-
niques that will help improve their testing, no matter what their current process is.
The criteria presented here are intended to be used as a “toolbox” of tricks that
can be used to find faults. Developers who read this book will find numerous ways
to improve their own software. Their self-testing activities can become more effi-
cient and effective, and the discussions of software faults that test engineers search
for will help developers avoid them. To paraphrase a famous parable, if you want
to teach a person to be a better fisherman, explain how and where the fish swim.
Finally, managers will find this book to be a useful explanation of how clever test
engineers do their job, and of how test tools work. They will be able to make more
effective decisions regarding hiring, promotions, and purchasing tools.

HOW CAN THIS BOOK BE USED?

A major advantage of the structure of this book is that it can be easily used for
several different courses. Most of the book depends on material that is taught very
early in college and some high schools: basic concepts from data structures and dis-
crete math. The sections are organized so that the early material in each chapter
is accessible to less advanced students, and material that requires more advanced
knowledge is clearly marked.

Specifically, the book defines six separate sets of chapter sections that form
streams through the book:

1. A module within a CS II course

2. A sophomore-level course on software testing

3. A module in a general software engineering course

4. A senijor-level course on software testing

5. A first-year MS level course on software testing

6. An advanced graduate research-oriented course on software testing

7. Industry practioner relevant sections

The stream approach is illustrated in the abbreviated table of contents in
the figure shown on pp. xix-xx. Each chapter section is marked with which stream
it belongs too. Of course, individual instructors, students, and readers may prefer
to adapt the stream to their own interests or purposes. We suggest that the first
two sections of Chapter 1 and the first two sections of Chapter 6 are appropriate
reading for a module in a data structures (CS II) class, to be followed by a simple

Preface ix

Stream 1: Module in a CS II course.
Stream 2: Sophomore-level course on software testing.
Stream 3: Module in a general software engineering course.

Stream 4: Senior-level course on software testing.

Stream $: First-year MS course on software testing.
Stream 6: Advanced graduate research-oriented course on software testing.
Stream 7: Industry practitioner relevant sections

STREAMS

Part I: Overview
Chapter 1. Introduction -
1.1 Activities of a Test Engineer -
1.2 Software Testing Limitations and Terminology -
1.3 Coverage Criteria for Testing
1.4 Older Software Testing Terminology
1.5 Bibliographic Notes

oopooan
oooao

Part II: Coverage Criteria
Chapter 2. Graph Coverage

2.1 Overview
2.2 Graph Coverage Criteria
2.3 Graph Coverage for Source Code
2.4 Graph Coverage for Design Elements
2.5 Graph Coverage for Specifications
2.6 Graph Coverage for Use Cases
2.7 Representing Graphs Algebraically
2.8 Bibliographic Notes

1111
(NN
(RARRRN
fERERNND
ooooooao

Chapter 3. Logic Coverage)
3.1 Overview: Logic Predicates and Clauses
3.2 Logic Expression Coverage Criteria
3.3 Structural Logic Coverage of Programs
3.4 Specification-Based Logic Coverage
3.5 Logic Coverage of Finite State Machines -
3.6 Disjunctive Normal Form Criteria
3.7 Bibliographic Notes

08880 00EODODBAD DODOBEBOOO
ooan

Chapter 4. Input Space Partitioning
4.1 Input Domain Modeling
4.2 Combination Strategies Criteria
4.3 Constraints among Partitions

" 4.4 Bibliographic Notes

i
nen
nnnn
oooao

Chapter 5. Syntax-Based Testing
5.1 Syntax-Based Coverage Criteria
5.2 Program-Based Grammars
5.3 Integration and Object-Oriented Testing
5.4 Specification-Based Grammars
5.5 Input Space Grammars [
5.6 Bibliographic Notes

e
P 1001
(FERRR
bopboBaan
oono

X Preface

Stream 1: Module in a CS II course.
Stream 2: Sophomore-level course on software testing.
Stream 3: Module in a general software engineering course.

Stream 4: Senior-level course on software testing.

Stream 5: First-year MS course on software testing.
Stream 6: Advanced graduate research-oriented course on software testing.
Stream 7: Industry practitioner relevant sections

Part III: Applying Criteria in Practice
Chapter 6. Practical Considerations
6.1 Regression Testing
6.2 Integration and Testing,
6.3 Test Process
6.4 Test Plans
6.5 Identifying Correct Outputs -
6.5 Bibliographic Notes

1n
i
ignnng
iRnnng
(FRNNN
ooooao

Chapter 7. Engineering Criteria for Technologies
7.1 Testing Object-Oriented Software
7.2 Testing Web Applications and Web Services
7.3 Testing Graphical User Interfaces
7.4 Real-Time Software and Embedded Software
7.5 Bibliographic Notes

iinkn
gooono

Chapter 8. Building Testing Tools
8.1 Instrumentation for Graph and Logical Expression Criteria
8.2 Building Mutation Testing Tools
8.3 Bibliographic Notes

it
oo

Chapter 9. Challenges in Testing Software
9.1 Testing for Emergent Properties: Safety and Security
9.2 Software Testability
9.3 Test Criteria and the Future of Software Testing
9.4 Bibliographic Notes

oono

assignment. Our favorite is to ask the students to retrieve one of their previously
graded programs and satisfy some simple test criterion like branch coverage. We
offer points for every fault found, driving home two concepts: an “A” grade doesn’t
mean the program always works, and finding faults is a good thing.

The sophomore-level course on software testing (stream 2) is designed to imme-
diately follow a data structures course (CS II). The marked sections contain material
that depends only on data structures and discrete math.

A module in a general software engineering course (stream 3) could augment the
survey material typical in such courses. The sections marked provide basic literacy
in software testing.

The senior-level course on software testing (stream 4) is the primary target
for this text. It adds material that requires a little more sophistication in terms of

Preface xi

software development than the sophomore stream. This includes sections in Chap-
ter 2 on data flow testing, sections that involve integration testing of multiple mod-
ules, and sections that rely on grammars or finite state machines. Most senior com-
puter science students will have seen this material in their other courses. Most of the
sections that appear in stream 4 but not stream 2 could be added to stream 2 with
appropriate short introductions. It is important to note that a test engineer does not
need to know all the theory of parsing to use data flow testing or all the theory on
finite state machines to use statecharts for testing.

The graduate-level course on software testing (stream 5) adds some additional
sections that rely on a broader context and that require more theoretical maturity.
For example, these sections use knowledge of elementary formal methods, polymor-
phism, and some of the UML diagrams. Some of the more advanced topics and the
entire chapter on building testing tools are also intended for a graduate audience.
This chapter could form the basis for a good project, for example, to implement a
simple coverage analyzer.

An advanced graduate course in software testing with a research emphasis such
as a PhD seminar (stream 6) includes issues that are still unproven and research in
nature. The bibliographic notes are recommended only for these students as indica-
tors for future in-depth reading.

Finally, sections that are reasonably widely used in industry, especially those
that have commercial tool support, are marked for stream 7. These sections have a
minimum of theory and omit criteria that are still of questionable usefulness.

Extensive supplementary materials, including sample syllabuses, PowerPoint
slides, presentation hints, solutions to exercises, working software, and errata are
available on the book’s companion Web site.

ACKNOWLEDGMENTS

Many people helped us write this book. Not only have the students in our Soft-
ware Testing classes at George Mason been remarkably tolerant of using a work
in progress, they have enthusiastically provided feedback on how to improve the
text. We cannot acknowledge all by name (ten semesters worth of students have
used it!), but the following have made especially large contributions: Aynur Abdu-
razik, Muhammad Abdulla, Yuquin Ding, Jyothi Chinman, Blaine Donley, Patrick
Emery, Brian Geary, Mark Hinkle, Justin Hollingsworth, John King, Yuelan Li,
Xiaojuan Liu, Chris Magrin, Jyothi Reddy, Raimi Rufai, Jeremy Schneider, Bill
Shelton, Frank Shukis, Quansheng Xiao, and Linzhen Xue. We especially ap-
preciate those who generously provided extensive comments on the entire book:
Guillermo Calderon-Meza, Becky Hartley, Gary Kaminski, and Andrew J. Offutt.
We gratefully acknowledge the feedback of early adopters at other educational in-
stitutions: Roger Alexander, Jane Hayes, Ling Liu, Darko Marinov, Arthur Reyes,
Michael Shin, and Tao Xie. We also want to acknowledge several people who pro-
vided material for the book: Roger Alexander, Mats Grindal, Hong Huang, Gary
Kaminski, Robert Nilsson, Greg Williams, Wuzhi Xu. We were lucky to receive ex-
cellent suggestion from Lionel Briand, Renée Bryce, Kim King, Sharon Ritchey,
Bo Sanden, and Steve Schach. We are grateful to our editor, Heather Bergman,

xii Preface

for providing unwavering support and enforcing the occasional deadline to move
the project along, as well as Kerry Cahill from Cambridge University Press for very
strong support on this project. ‘

We also acknowledge George Mason University for supporting both of us on
sabbaticals and for providing GTA support at crucial times. Our department Chair,
Hassan Gomaa, has enthusiastically supported this effort.

Finally, of course none of this is possible without the support of our families.
Thanks to Becky, Jian, Steffi, Matt, Joyce, and Andrew for keeping us grounded in
reality and helping keep us happy for the past five years.

Just as all programs contain faults, all texts contain errors. Our text is no differ-
ent. And, as responsibility for software faults rests with the developers, responsibil-
ity for errors in this text rests with us, the authors. In particular, the bibliographic
notes sections reflect our perspective of the testing field, a body of work we read-
ily acknowledge as large and complex. We apologize in advance for omissions, and
invite pointers to relevant citations.

Paul Ammann
Jeff Offutt

Contents

Preface
Part 1 Overview

1 Introduction

1.1 Activities of a Test Engineer
1.1.1 Testing Levels Based on Software Activity
1.1.2 Beizer’s Testing Levels Based on Test Process
Maturity
1.1.3 Automation of Test Activities
1.2 Software Testing Limitations and Terminology
1.3 Coverage Criteria for Testing
1.3.1 Infeasibility and Subsumption
1.3.2 Characteristics of a Good Coverage Criterion
1.4 Older Software Testing Terminology
1.5 Bibliographic Notes

Part 2 Coverage Criteria

2 Graph Coverage

2.1 Overview

2.2 Graph Coverage Criteria
2.2.1 Structural Coverage Criteria
2.2.2 Data Flow Criteria

2.2.3 Subsumption Relationships among Graph Coverage

Criteria
2.3 Graph Coverage for Source Code

xiv Contents

2.3.1 Structural Graph Coverage for Source Code
2.3.2 Data Flow Graph Coverage for Source Code
2.4 Graph Coverage for Design Elements
2.4.1 Structural Graph Coverage for Design Elements
2.4.2 Data Flow Graph Coverage for Design Elements
2.5 Graph Coverage for Specifications
2.5.1 Testing Sequencing Constraints
2.5.2 Testing State Behavior of Software
2.6 Graph Coverage for Use Cases
2.6.1 Use Case Scenarios
2.7 Representing Graphs Algebraically
2.7.1 Reducing Graphs to Path Expressions
2.7.2 Applications of Path Expressions
2.7.3 Deriving Test Inputs
2.7.4 Counting Paths in a Flow Graph and Determining
Max Path Length
2.7.5 Minimum Number of Paths to Reach All Edges
2.7.6 Complementary Operations Analysis
2.8 Bibliographic Notes

Logic Coverage

3.1 Overview: Logic Predicates and Clauses
3.2 Logic Expression Coverage Criteria
3.2.1 Active Clause Coverage
3.2.2 Inactive Clause Coverage
3.2.3 Infeasibility and Subsumption
3.2.4 Making a Clause Determine a Predicate
3.2.5 Finding Satisfying Values
3.3 Structural Logic Coverage of Programs
3.3.1 Predicate Transformation Issues
3.4 Specification-Based Logic Coverage
3.5 Logic Coverage of Finite State Machines
3.6 Disjunctive Normal Form Criteria
3.7 Bibliographic Notes

input Space Partitioning

4.1 Input Domain Modeling
4.1.1 Interface-Based Input Domain Modeling
4.1.2 Functionality-Based Input Domain Modeling
4.1.3 Identifying Characteristics
4.1.4 Choosing Blocks and Values
4.1.5 Using More than One Input Domain Model
4.1.6 Checking the Input Domain Model

4.2 Combination Strategies Criteria

4.3 Constraints among Partitions

4.4 Bibliographic Notes

52
54
65
65
67
75
75
77
87
90
91
9
96
96

97
98
98
100

104

104
106
107
111
112
113
115
120
127
131
134
138
147

150

152
153
154
154
156
158
158
160
165
166

Contents xv

5 Syntax-Based Testing 170
5.1 Syntax-Based Coverage Criteria 170
5.1.1 BNF Coverage Criteria 170

5.1.2 Mutation Testing 173

5.2 Program-Based Grammars 176
5.2.1 BNF Grammars for Languages 176

5.2.2 Program-Based Mutation 176

5.3 Integration and Object-Oriented Testing 191
5.3.1 BNF Integration Testing 192

5.3.2 Integration Mutation 192

5.4 Specification-Based Grammars 197
5.4.1 BNF Grammars 198

5.4.2 Specification-Based Mutation 198

5.5 Input Space Grammars 201
5.5.1 BNF Grammars 201

5.5.2 Mutation for Input Grammars 204

5.6 Bibliographic Notes 210
Part 3 Applying Criterla in Practice 213
6 Practical Considerations 215
6.1 Regression Testing 215
6.2 Integration and Testing 217
6.2.1 Stubs and Drivers 218

6.2.2 Class Integration Test Order 218

6.3 Test Process 219
6.3.1 Requirements Analysis and Specification 220

6.3.2 System and Software Design 221

6.3.3 Intermediate Design 222

6.3.4 Detailed Design 223

6.3.5 Implementation 223

6.3.6 Integration 224

6.3.7 System Deployment 224

6.3.8 Operation and Maintenance 224

6.3.9 Summary 225

6.4 Test Plans 225
6.5 Identifying Correct Outputs 230
6.5.1 Direct Verification of Outputs 230

6.5.2 Redundant Computations 231

6.5.3 Consistency Checks 231

6.5.4 Data Redundancy 232

6.6 Bibliographic Notes 233
7 Englneering Criteria for Technologles 235
7.1 Testing Object-Oriented Software 236

7.1.1 Unique Issues with Testing OO Software 237

xvi Preface

7.1.2 Types of Object-Oriented Faults

7.2 Testing Web Applications and Web Services
7.2.1 Testing Static Hyper Text Web Sites
7.2.2 Testing Dynamic Web Applications
7.2.3 Testing Web Services

7.3 Testing Graphical User Interfaces
7.3.1 Testing GUIs

7.4 Real-Time Software and Embedded Software

7.5 Bibliographic Notes

8 Bullding Testing Tools

8.1 Instrumentation for Graph and Logical
Expression Criteria

8.1.1 Node and Edge Coverage

8.1.2 Data Flow Coverage

8.1.3 Logic Coverage
8.2 Building Mutation Testing Tools

8.2.1 The Interpretation Approach

8.2.2 The Separate Compilation Approach

. 8.2.3 The Schema-Based Approach

8.2.4 Using Java Reflection

8.2.5 Implementing a Modern Mutation System
8.3 Bibliographic Notes

9 Challenges in Testing Software

9.1 Testing for Emergent Properties: Safety and Security
9.1.1 Classes of Test Cases for Emergent Properties
9.2 Software Testability
9.2.1 Testability for Common Technologies
9.3 Test Criteria and the Future of Software Testing
9.3.1 Going Forward with Testing Research
9.4 Bibliographic Notes

List of Criteria
Bibliography
Index

237
256
257
257
260
260
261
262
265

268

268
268
27
272
272
274
274
275
276
277
277

280

280
283
284
285
286
288
290

293
295
319

PART 1
E———

Overview

