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Alternative Ways for formulation of Hybrid Stress Elements

Alternative Ways for Formulation
of Hybrid Stress Elements

0 Introduction

An element stiffness matrix by assumed compatible displacements
can be derived not only by the conventional potential energy principle but
also, indirectly, by generalized variational principles such as the
Hu-Washizu principle and the Heilinger-Reissner principle. Tang and his
colleagues!’” ' have initiated a general and convenient method for
constructing what they called quasi-conforming elements. They indicated
that their method can be derived using the Hu-Washizu principle and
pointed out that the compatible element is only a special case. Fraeijs de
Veubeke®! had cited his limitation principle and indicated that if no
restrictions are applied to the assumed stress distribution the
Hellinger-Reissner principle will yield the same element stiffness matrix
as that by the assumed displacement method. Compatible elements are
often found to be too rigid for finite element analyses and incompatible
elements have been suggested by many authors!*®), There is, however, the
lack of a rational procedure for constructing shape functions that will
guarantee the resulting element to pass the patch test. The present note is
-to show a way to formulate incompatible elements for solid continuum and
for plate bending problems by the Hellinger-Reissner principle. It turns out
that the resulting scheme is equivalent to that recently suggested by
Tong!”® for constructing hybrid stress elements. In Tong’s scheme the
inversion of a large flexibility matrix can be avoided. A review is also
given of the quasi-conforming elements by Tang et al., indicating another
possible derivation of hybrid stress elements that does not require the

inversion of a large matrix.
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1 Mixed Formulation by HelIinger—Reissner‘Principle

To derive the element stiffness matrix it is only necessary to express
the boundary displacements # in terms of the nodal displacements q. When

the strain energy U of the element is expressed in terms of ¢ in the form of
1
U= Equq (1)

then k is the element stiffness matrix.
When the displacements « in an element is not compatible with the
boundary displacements # the Hellinger-Reissner principle takes the form

By = J‘V,:—%O'TSO'-—O'T(DIJ):I dy - IaVTT(u—ﬁ) dS =Stationary  (2)

Where o =stresses, S=-elastic compliance, 7=boundary traction that is
related to o, V=volume of the element, and, 6V =entire boundary of the

element, and the strain-displacement relation is expressed as
£=Du (3)

In the finite element formulation we separate element displacements u
into two parts—the compatible part u, which is expressed in terms of g and
the additional part u, which is expressed in terms of internal displacement
parameters A that can be statically condensed in the element level. Here,
u, may be incompatible along the boundary or it may be bubble functions
which are zero along the boundary. If #, is incompatible, equation (2)

should be used in the formulation. By realizing that
- T T
La(Dua)dV = jy (Do) u dV + _LWT u,dS
and u, =u=u on OV, we have
T = IV[—%GTSO'+0'T(Duc)—(DT0')Tua]dV (4)

We also note that when u_ are bubble functions for which u, =0 on OV, the
boundary integral term in equation (2) no longer appears, so equation (4)

still holds. Since the equation

D' =0 (5)
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represents the stress equilibrium conditions, the last term in the integral in

equation (4) actually plays the role of the conditions of constraint with the

corresponding Lagrange multipliers.
In the finite element implementation, we assume

oc=Pp (6)
where P= c, (7)

and ¢, are row vectors. Further, we assume

u, = Ng (8)
and u, =LA (9)
from which Du, = Bg (10)
and D'c=Ef (11)

The functional 7z, thus takes the form

1

T, = —EﬂTHﬂ+ﬂTGq—,BTR11 (12)

where H={ P'spay
G= [ P'BdV (13)

and R=| JETLdY

From the first variation of z; with respect to fand A we obtain
B=H"(Gg-R2A) (14)
and R'B=0 (15)
By eliminating A and substituting £ into
1

U=2pHp (16)
we obtain k =G"MG -G MR (R" MR, R* MG (17)
where M=H" (18)

We note that equation (17) can also be obtained by first obtaining a
stiffness matrix with ¢ and A4 as nodal displacements and then eliminating
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A by static condensation.
The key point to be mentioned here is that if, for all the stress

components which are coupled in the stress-strain relation, the same row
vector ¢, is used in equation (17), the inversion of H can be reduced to that
of a matrix of the order of the ¢, matrix!"'" and the matrix R"MR, is, in
general, also of much smaller order than that of H.

It is seen that equation (4) can also be changed to

_ 1 ; T \T, T .T T
T = IV[_EG So-D o)u -Do ua]dV+ J-BVT udS (19)

If u, is properly chosen so that, under the present variational formulation,
equation (5) is identically satisfied, the second term in the volume integral in
equation (19) can be omitted; the resulting variational functional then becomes

1
Tges = IV[—EO'TSO'—(DTO')Tua:l dv + J'BVTTucds (20)

R

.. =—%,BTH,H—ﬂTR1/1+ﬂTGIq (21)

Although in the original stress assumption, the equilibrium condition is not
incorporated, the variational process now enforces the condition. The
resulting element by either equation (4) or equation (20) can thus be named
a hybrid stress model.

Equation (21) represents exactly the same procedure suggested by Tong!"®!
for the formulation of hybrid stress elements. For a 3-D solid problem with
stress distribution (o = Pf) expressed in terms of Cartesian co-ordinates as in
Reference[8)], the equations of equilibrium [equation(5)] which are of
polynomial type can be satisfied pointwise by setting the coefficient of each
polynomial term to zero. This results in constraint equations of the form

R'B=0 (22)

Tong, then, suggested that for the hybrid formulation one need to take the first
and last term in equation (21) and to introduce the Lagrange multiplier
term B"RA. The number of Lagrange multipliers A, then, must be equal to
the number of independent equations in equation (22). Here in the present
formulation by 7 , the number of terms in #, should also be the same number.

We note that we cannot reduce z,. to 7,. in a reverse process. Another
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remark is that if the stresses o are expressed in terms of variables in a general
co-ordinate system such as the natural co-ordinates for isoparametric elements,
then, in general, the equations of equilibrium are only approximately satisfied.

In such a case, however, equations (4) and (19) still hold.
We should remark that the incompatible element Q¢ by Wilson et al.l]

was not derived by using equation (4). Thus, although in the case of a
rectangular shape, element O was shown to be identical to the hybrid stress
element by Pian!'" '2, it does not pass the patch test for an element of a
general geometric shape. ‘

The next example for the hybrid stress element is the plate bending
problem for which it is not an easy task to construct, within the element, a
compatible displacement field in terms of nodal displacements, g, while it is
simple to express boundary displacements # in terms of 4. In this case
again, equation (2) should be employed. It is obvious that the element
displacements u should be at least of the same order as that of & . If u is
entirely independent of # , say u is equal to LA, then the number
of A should be about the same as that of ¢ and the total number of
displacement parameters will be at least double that of nodal displacement q.
Then, in order to avoid rank deficiency of the resulting element stiffness
matrix, higher order stress approximation must be made. In practice, we let

u=d+u, (23)
where @ is an incompatible displacement in terms of ¢, and u, consists of
only a small number of terms with parameters A .

Integrating equation (2), we obtain

_ _1 T T AT A T T T—
z. = jy[ ~0"Sa~(D'0)"i~(D"o) ua:ldV+LVT 7dS  (24)

R

Here, by proper choice of u,, the equilibrium equations can be identically

satisfied by the variational process, and we may again write simply
1 T T T T—
P jy -50'So-(D'o)x, dV+LVT 7ds (25)

This is precisely what Tong!"! has used to arrive at his new scheme for
the construction of plate bending elements under the assumed stress hybrid

model. In one of Tong’s examples, the assumed moment distribution is
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quadratic and there exists only one equilibrium constraint for B, hence there
should be only one A . In face, in this case, u, may be any function in terms

of one parameter and may even be a constant.

2 Formulation by Hu-Washizu Principle

The quasi-conforming elements initiated by Tang!!! can be derived by
the Hu-Washizu principle. For an element with boundary displacements &

the variational functional is
Tyw = J'V(%ETCE—O'T€+O'TDquV+ LVTT(u—tT)dS (26)

where c=s"' (27)
and strains &, stresses o , element displacements u# and boundary
displacements # are independent.
The key step in the finite element formulation is that both o and ¢ are
approximated by the same function, i.e.
£=Pa (28)
and c=Pp (29)

where P is given by equation (7).
The integral of o"¢ over the element volume can be written as " Ha

where H is symmetric and positive definite and can be expressed, in
general, in the form of

H= (30)

where B, = _[V ¢lcdV (31)

Thus, the inversion of H is reduced to that of the individual submatrices B,.
In fact, in many cases it is possible to choose reference co-ordinates for the
c; functions such that B, are all diagonal matrices.

The treatment of displacement # and &% are the same as those discussed
earlier and the stress equilibrium condition can be introduced accordingly. For
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example, similar to the implementation of equation (4)

Taw =%aTJa— B Ha+pf"Gg-p"RA (32)
where J= J'V P'CPdv (33)

Variation of m,, with respect to f thus leads to
a=H"(Gg-RA) (34)
Substituting « into the strain energy expression the element stiffness matrix
with ¢ and 4 as nodal displacements can be obtained and A can then be
eliminated by static condensation. The resulting element stiffness matrix can
also be expressed by equation (17) with
M=H'JH"' (35)
If the row vectors c; are the same for all stress components which are coupled in
the stress-strain relation, it can be shown that the present result is identical to that
obtained by z, . Tang and his colleagues have applied the quasi-conforming
elements to 2-D and 3-D isoparametric elements and to plates and shells!">!>14],

Many of their resulting elements are identical to hybrid stress elements.

3 Conclusion

The introduction of additional internal displacement modes in mixed finite
element formulations by the Hellinger-Reissner principle and the Hu-Washizu
principle can lead to element stiffness matrices that are equivalent to the
assumed stress hybrid method. The new approach will yield more flexible and
more efficient methods. For example, because exact equilibrium is not required,
the assumed stresses may be expanded in terms of natural co-ordinates, such as
the isoparametric co-ordinates, and the formulation Will be simplified and the
resulting element stiffness matrix will be less sensitive to the reference
Cartesian co-ordinate system. For shell elements, the new formulation can
always avoid the coupling between the membrane stresses and moment stresses
in the H matrix: hence, it will lead to simpler computing procedures.
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A New Formulation of
Hybrid/mixed Finite Element

[ Abstract] A new formulation of finite element method is accomplished by the
Hellinger-Reissner principle for which the stress equilibrium
conditions are not introduced initially but are brought-in through the
use of additional internal displacement parameters. The method can
lead to the same result as the assumed stress hybrid model. However,
it is more general and more flexible. The use of natural coordinates
for stress assumptions leads to elements which are less sensitive to
the choice of reference coordinates. Numerical solutions by 3-D
solid element indicate that more efficient elements can be
constructed by assumed stresses which only partially satisfy the

equilibrium conditions.

0 Introduction

Since its initial introduction''), the assumed stress hybrid method has
been extended to different types of elements and for both linear and
nonlinear problems®”). It was also recognized that the method can be
formulated using the Hellinger-Reissner principle® except that for the
assumed stressed the equilibrium conditions are initially satisfied. The
method, thus, may be named hybrid/mixed finite element method.
Alternative formulations for the assumed stress method have been
suggested’® using the Hellinger-Reissner principle and the Hu-Washizu
principle in which the stress equilibrium conditions are not considered
initially but are brought-in as constraint equations by using additional

internal displacements as Lagrange multipliers.
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This paper is to present the new formulation by the Hellinger-Reissner
principle and to describe its generality and flexibility using examples in 3-D

solids.

1 Formulation by Hellinger-Reissner Principle

In using the Hellinger-Reissner principle to formulate the element
stiffness matrix the following functional 7, for an element should be

stationary, !
7= [ |-50"So+oOw |av - [ 77 @-m)ds (1
R vl 2 av

where o =stresses; u=eclement displacements; # = element boundary
displacements in terms of nodal displacements ; §= elastic compliance
matrix ; 7= boundary traction = vo ; v = directional cosine of surface
normal.
Here the equation
£=Du (2)
in the strain displacement relation and the corresponding homogeneous
equilibrium condition is

Do =0 (3)

When the element displacements u are compatible, i.e. u=#% on 8V,
and when the assumed stresses satisfy equation (3), an element stiffness
matrix k derived by equation (1) is the same as that by the original hybrid
stress model™®. In this case, the various components in the assumed stresses
are coupled and hence the complete flexibility matrix H of m X m, where m
is the number of stress parameters, must be inverted. Also due to the
equilibrium constraints the assumed stresses are expressed in Cartesian
coordinates.

In the new formulation, the stress equilibrium conditions equation (3)
are not satisfied but the element displacements u are divided into two parts

u=u, +u, (4)

where u, = Ng (5)

q

are compatible displacements in terms of nodal displacements g and
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u,=MA (6)

where A are additional internal displacement parameters. M may be

incompatible or may be bubble functions.
By integrating the terms with u; and by recognizing, that

u, =u—-u oV
one obtains from equation (1)
Ty = L,:—%O'TSO'+O'T(Duq)—(DTO')TuA:, dv (7)

It is seen that the last term in equation (7) contains the stress equilibrium
condition with u, as Lagrange multipliers. Thus, in the finite element

formulation the stresses need not initially satisfy the equilibrium condition,
since the introduction of #, will enforce this condition. By expressing

stresses in terms of stress parameters 4

o=Pp (8)
7y can be written as
1
7y =—E,BTHﬂ+ﬂTGq—ﬂTRl (9)
where H= J;PTSPdV (10)
G=J;PT(DN)dV (11)
and R= IV(DTP)TMdV (12)
The stationary condition of 7, then yields
B=H"'(Gqg-RA) (13)
and R'B=0. (14)

Eliminating A and substituting # into the strain energy expression one

obtains the element stiffness matrix
k=G"H™'G (15)
where G=G-R(R"H'R'RTH'G (16)

Equation (14) represents the equilibrium constraints for the stress parameter
B. If equation (14) is applied such that the equilibrium conditions are




