

信号处理的小波导引

(英文版·第3版)

awavelet tour of signal processing

The Sparse Way

Stéphane Mallat

Stéphane Mallat

巴黎综合理工大学

信号处理的小波导引

(英文版·第3版)

A Wavelet Tour of Signal Processing

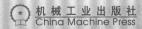
The Sparse Way

(Third Edition)

Stéphane Mallat

巴黎综合理工大学

等著



Stéphane Mallat With contributions from Gabriel Peyré: A Wavelet Tour of Signal Processing: The Sparse Way, Third Edition (ISBN 978-0-12-374370-1).

Original English language edition copyright © 2009 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

ISBN: 978-981-272-425-0

Copyright © 2009 by Elsevier (Singapore) Pte Ltd.

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

本书英文影印版由Elsevier (Singapore) Pte Ltd.授权机械工业出版社在中国大陆境内独家发行。本版仅限在中国境内(不包括香港特别行政区及台湾地区)出版及标价销售。未经许可之出口,视为违反著作权法,将受法律之制裁。

版权所有, 侵权必究

本书法律顾问 北京市展达律师事务所

本书版权登记号: 图字: 01-2009-5283

图书在版编目(CIP)数据

信号处理的小波导引(英文版·第3版)/ 马拉特(Mallat, S.)等著. 一北京: 机械工业出版社, 2010.1

(经典原版书库)

土夕百分. A Wavelet Tour of Signal Processing: The Sparse Way, Third Edition

ISBN 978-7-111-28861-9

I. 信··· □ □··· Ⅲ. 小波分析-应用-信号处理-英文 Ⅳ. TN911.7

中国版本图书馆CIP数据核字(2009)第195853号

机械工业出版社(北京市西城区百万庄大街22号 邮政编码 100037)

责任编辑:迟振春

北京京师印务有限公司印刷

2010年1月第1版第1次印刷

150mm×214mm · 25.75印张

标准书号: ISBN 978-7-111-28861-9

定价: 69.00元

凡购本书, 如有缺页、倒页、脱页, 由本社发行部调换

客服热线: (010) 88378991, 88361066

购书热线: (010) 68326294, 88379649, 68995259

投稿热线: (010) 88379604 读者信箱: hzjsj@hzbook.com

Preface to the Sparse Edition

I cannot help but find striking resemblances between scientific communities and schools of fish. We interact in conferences and through articles, and we move together while a global trajectory emerges from individual contributions. Some of us like to be at the center of the school, others prefer to wander around, and a few swim in multiple directions in front. To avoid dying by starvation in a progressively narrower and specialized domain, a scientific community needs also to move on. Computational harmonic analysis is still very much alive because it went beyond wavelets. Writing such a book is about decoding the trajectory of the school and gathering the pearls that have been uncovered on the way. Wavelets are no longer the central topic, despite the previous edition's original title. It is just an important tool, as the Fourier transform is. Sparse representation and processing are now at the core.

In the 1980s, many researchers were focused on building time-frequency decompositions, trying to avoid the uncertainty barrier, and hoping to discover the ultimate representation. Along the way came the construction of wavelet orthogonal bases, which opened new perspectives through collaborations with physicists and mathematicians. Designing orthogonal bases with Xlets became a popular sport with compression and noise-reduction applications. Connections with approximations and sparsity also became more apparent. The search for sparsity has taken over, leading to new grounds where orthonormal bases are replaced by redundant dictionaries of waveforms.

During these last seven years, I also encountered the industrial world. With a lot of naiveness, some bandlets, and more mathematics, I cofounded a start-up with Christophe Bernard, Jérome Kalifa, and Erwan Le Pennec. It took us some time to learn that in three months good engineering should produce robust algorithms that operate in real time, as opposed to the three years we were used to having for writing new ideas with promising perspectives. Yet, we survived because mathematics is a major source of industrial innovations for signal processing. Semiconductor technology offers amazing computational power and flexibility. However, ad hoc algorithms often do not scale easily and mathematics accelerates the trial-and-error development process. Sparsity decreases computations, memory, and data communications. Although it brings beauty, mathematical understanding is not a luxury. It is required by increasingly sophisticated information-processing devices.

New Additions

Putting sparsity at the center of the book implied rewriting many parts and adding sections. Chapters 12 and 13 are new. They introduce sparse representations in redundant dictionaries, and inverse problems, super-resolution, and

iv Preface to the Sparse Edition

compressive sensing. Here is a small catalog of new elements in this third edition:

- Radon transform and tomography
- Lifting for wavelets on surfaces, bounded domains, and fast computations
- IPEG-2000 image compression
- Block thresholding for denoising
- Geometric representations with adaptive triangulations, curvelets, and bandlets
- Sparse approximations in redundant dictionaries with pursuit algorithms
- Noise reduction with model selection in redundant dictionaries
- Exact recovery of sparse approximation supports in dictionaries
- Multichannel signal representations and processing
- Dictionary learning
- Inverse problems and super-resolution
- Compressive sensing
- Source separation

Teaching

This book is intended as a graduate-level textbook. Its evolution is also the result of teaching courses in electrical engineering and applied mathematics. A new website provides software for reproducible experimentations, exercise solutions, together with teaching material such as slides with figures and MATLAB software for numerical classes of http://wavelet-tour.com.

More exercises have been added at the end of each chapter, ordered by level of difficulty. Level¹ exercises are direct applications of the course. Level² exercises requires more thinking. Level³ includes some technical derivation exercises. Level⁴ are projects at the interface of research that are possible topics for a final course project or independent study. More exercises and projects can be found in the website.

Sparse Course Programs

The Fourier transform and analog-to-digital conversion through linear sampling approximations provide a common ground for all courses (Chapters 2 and 3). It introduces basic signal representations and reviews important mathematical and algorithmic tools needed afterward. Many trajectories are then possible to explore and teach sparse signal processing. The following list notes several topics that can orient a course's structure with elements that can be covered along the way.

Sparse representations with bases and applications:

- Principles of linear and nonlinear approximations in bases (Chapter 9)
- Lipschitz regularity and wavelet coefficients decay (Chapter 6)
- Wavelet bases (Chapter 7)
- Properties of linear and nonlinear wavelet basis approximations (Chapter 9)
- Image wavelet compression (Chapter 10)
- Linear and nonlinear diagonal denoising (Chapter 11)

Sparse time-frequency representations:

- Time-frequency wavelet and windowed Fourier ridges for audio processing (Chapter 4)
- Local cosine bases (Chapter 8)
- Linear and nonlinear approximations in bases (Chapter 9)
- Audio compression (Chapter 10)
- Audio denoising and block thresholding (Chapter 11)
- Compression and denoising in redundant time-frequency dictionaries with best bases or pursuit algorithms (Chapter 12)

Sparse signal estimation:

- Bayes versus minimax and linear versus nonlinear estimations (Chapter 11)
- Wavelet bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Thresholding estimation (Chapter 11)
- Minimax optimality (Chapter 11)
- Model selection for denoising in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)

Sparse compression and information theory:

- Wavelet orthonormal bases (Chapter 7)
- Linear and nonlinear approximations in bases (Chapter 9)
- Compression and sparse transform codes in bases (Chapter 10)
- Compression in redundant dictionaries (Chapter 12)
- Compressive sensing (Chapter 13)
- Source separation (Chapter 13)

Dictionary representations and inverse problems:

- Frames and Riesz bases (Chapter 5)
- Linear and nonlinear approximations in bases (Chapter 9)
- Ideal redundant dictionary approximations (Chapter 12)
- Pursuit algorithms and dictionary incoherence (Chapter 12)
- Linear and thresholding inverse estimators (Chapter 13)
- Super-resolution and source separation (Chapter 13)
- Compressive sensing (Chapter 13)

vi Preface to the Sparse Edition

Geometric sparse processing:

- Time-frequency spectral lines and ridges (Chapter 4)
- Frames and Riesz bases (Chapter 5)
- Multiscale edge representations with wavelet maxima (Chapter 6)
- Sparse approximation supports in bases (Chapter 9)
- Approximations with geometric regularity, curvelets, and bandlets (Chapters 9 and 12)
- Sparse signal compression and geometric bit budget (Chapters 10 and 12)
- Exact recovery of sparse approximation supports (Chapter 12)
- Super-resolution (Chapter 13)

ACKNOWLEDGMENTS

Some things do not change with new editions, in particular the traces left by the ones who were, and remain, for me important references. As always, I am deeply grateful to Ruzena Bajcsy and Yves Meyer.

I spent the last few years with three brilliant and kind colleagues—Christophe Bernard, Jérome Kalifa, and Erwan Le Pennec—in a pressure cooker called a "start-up." Pressure means stress, despite very good moments. The resulting sauce was a blend of what all of us could provide, which brought new flavors to our personalities. I am thankful to them for the ones I got, some of which I am still discovering.

This new edition is the result of a collaboration with Gabriel Peyré, who made these changes not only possible, but also very interesting to do. I thank him for his remarkable work and help.

Stéphane Mallat

Notations

```
\langle f, g \rangle
                       Inner product (A.6)
 \|f\|
                      Euclidean or Hilbert space norm
 ||f||_1
                      L<sup>1</sup> or l<sup>1</sup> norm
                      L^{\infty} norm
 ||f||_{\infty}
f[n] = O(g[n]) Order of: there exists K such that f[n] \le Kg[n]
f[n] = o(g[n]) Small order of: \lim_{n \to +\infty} \frac{f[n]}{g[n]} = 0
                      Equivalent to: f[n] = O(g[n]) and g[n] = O(f[n])
f[n] \sim g[n]
 A < +\infty
                      A is finite
 A\gg B
                      A is much bigger than B
 2*
                      Complex conjugate of z \in \mathbb{C}
 |x|
                      Largest integer n \leq x
 [x]
                      Smallest integer n \ge x
 (x)_+
                      \max(x,0)
 n \mod N
                      Remainder of the integer division of n modulo N
Sets
N
                      Positive integers including 0
\mathbb{Z}
                      Integers
\mathbb{R}
                      Real numbers
\mathbb{R}^+
                      Positive real numbers
\mathbb{C}
                      Complex numbers
|\Lambda|
                      Number of elements in a set \Lambda
Signals
f(t)
                      Continuous time signal
f[n]
                      Discrete signal
\delta(t)
                      Dirac distribution (A.30)
\delta[n]
                      Discrete Dirac (3.32)
\mathbf{1}_{[a,b]}
                      Indicator of a function that is 1 in [a, b] and 0 outside
Spaces
\mathbf{C}_0
                     Uniformly continuous functions (7.207)
\mathbf{C}^p
                     p times continuously differentiable functions
\mathbf{C}^{\infty}
                     Infinitely differentiable functions
\mathbf{W}^{s}(\mathbb{R})
                     Sobolev<sup>s</sup> times differentiable functions (9.8)
L^2(\mathbb{R})
                     Finite energy functions \int |f(t)|^2 dt < +\infty
                     Functions such that \int |f(t)|^p dt < +\infty
\mathbf{L}^{\mathbf{p}}(\mathbb{R})
                     Finite energy discrete signals \sum_{n=-\infty}^{+\infty} |f[n]|^2 < +\infty
Discrete signals such that \sum_{n=-\infty}^{+\infty} |f[n]|^p < +\infty
\ell^2(\mathbb{Z})
\ell^p(\mathbb{Z})
\mathbb{C}^N
                     Complex signals of size N
\mathbf{U} \oplus \mathbf{V}
                     Direct sum of two vector spaces
```

viii Notations

 $\mathbf{U} \otimes \mathbf{V}$ Tensor product of two vector spaces (A.19)

Operators

Id Identity

f'(t) Derivative $\frac{df(t)}{dt}$

f(t) Derivative $\frac{dt}{dt}$ $f^{(p)}(t)$ Derivative $\frac{d^p f(t)}{dt^p}$ of order $\frac{d^p}{dt}$ Gradient vector (6.51)

 $f \star g(t)$ Continuous time convolution (2.2)

 $f \star g[n]$ Discrete convolution (3.33) $f \otimes g[n]$ Circular convolution (3.73)

Transforms

 $\hat{f}(\omega)$ Fourier transform (2.6), (3.39)

 $\hat{f}[k]$ Discrete Fourier transform (3.49)

Sf(u, s) Short-time windowed Fourier transform (4.11)

 $P_{S}f(u, \xi)$ Spectrogram (4.12)

Wf(u, s) Wavelet transform (4.31)

 $P_W f(u, \xi)$ Scalogram (4.55)

 $P_V f(u, \xi)$ Wigner-Ville distribution (4.120)

Probability

X Random variable $E\{X\}$ Expected value

 $\mathcal{H}(X)$ Entropy (10.4)

 $\mathcal{H}_d(X)$ Differential entropy (10.20)

 $Cov(X_1, X_2)$ Covariance (A.22) F[n] Random vector

 $R_F[k]$ Autocovariance of a stationary process (A.26)

Contents

		Preface	e to the Sparse Edition	.iii
		Notatio	ons	vii
CHAPTER	1	Spars	e Representations	1
	1.1	•	ıtational Harmonic Analysis	1
		1.1.1	The Fourier Kingdom	2
		1.1.2	Wavelet Bases	2
	1.2	Approx	ximation and Processing in Bases	5
		1.2.1	Sampling with Linear Approximations	7
		1.2.2	Sparse Nonlinear Approximations	8
		1.2.3	Compression	11
		1.2.4	Denoising	11
	1.3	Time-F	requency Dictionaries	14
		1.3.1	Heisenberg Uncertainty	15
		1.3.2	Windowed Fourier Transform	16
		1.3.3	Continuous Wavelet Transform	17
		1.3.4	Time-Frequency Orthonormal Bases	19
	1.4	Sparsit	y in Redundant Dictionaries	21
		1.4.1	Frame Analysis and Synthesis	21
		1.4.2	Ideal Dictionary Approximations	23
		1.4.3	Pursuit in Dictionaries	24
	1.5	Invers	e Problems	26
		1.5.1	Diagonal Inverse Estimation	27
		1.5.2	Super-resolution and Compressive Sensing	28
	1.6	Travel	Guide	30
		1.6.1	Reproducible Computational Science	30
		1.6.2	Book Road Map	30
CHAPTER	2		ourier Kingdom	33
	2.1	Linear	Time-Invariant Filtering	33
		2.1.1	Impulse Response	33
		2.1.2	Transfer Functions	35
	2.2	Fourie	r Integrals	35
		2.2.1	Fourier Transform in $\mathbf{L}^1(\mathbb{R})$	35
		2.2.2	Fourier Transform in $\mathbf{L}^2(\mathbb{R})$	38
		2.2.3	Examples	40
	2.3	Prope	rties	42
		2.3.1	Regularity and Decay	42
		2.3.2	Uncertainty Principle	43

x Contents

		2.3.3 Total Variation	46
	2.4	Two-Dimensional Fourier Transform	51
	2.5	Exercises	55
CHAPTER	3	Discrete Revolution	59
	3.1	Sampling Analog Signals	59
			59
		3.1.2 Aliasing	61
		3.1.3 General Sampling and Linear Analog Conversions	65
	3.2	Discrete Time-Invariant Filters	70
		3.2.1 Impulse Response and Transfer Function	70
		3.2.2 Fourier Series	72
	3.3	Finite Signals	75
		3.3.1 Circular Convolutions	76
		3.3.2 Discrete Fourier Transform	76
		3.3.3 Fast Fourier Transform	78
		3.3.4 Fast Convolutions	79
	3.4	Discrete Image Processing	80
		3.4.1 Two-Dimensional Sampling Theorems	80
		3.4.2 Discrete Image Filtering	82
		3.4.3 Circular Convolutions and Fourier Basis	83
	3.5	Exercises 8	85
CHAPTER	4	Time Meets Frequency	89
	4.1	Time-Frequency Atoms	89
	4.2	Windowed Fourier Transform	92
		4.2.1 Completeness and Stability	94
		4.2.2 Choice of Window	98
		4.2.3 Discrete Windowed Fourier Transform	01
	4.3	Wavelet Transforms 10	02
		4.3.1 Real Wavelets	03
		4.3.2 Analytic Wavelets 10	07
		4.3.3 Discrete Wavelets	12
	4.4	Time-Frequency Geometry of Instantaneous Frequencies 1	15
		4.4.1 Analytic Instantaneous Frequency	
		4.4.2 Windowed Fourier Ridges 1	18
		4.4.3 Wavelet Ridges	
	4.5	Quadratic Time-Frequency Energy 1	34
		4.5.1 Wigner-Ville Distribution	
		4.5.2 Interferences and Positivity 14	40
		4.5.3 Cohen's Class	45
		4.5.4 Discrete Wigner-Ville Computations	49
		4.5.4 Discrete wigher the computations	-/

CHAPTER 5	Frame	Frames	
5.	1 Frames	and Riesz Bases	. 155
	5.1.1	Stable Analysis and Synthesis Operators	
	5.1.2	Dual Frame and Pseudo Inverse	. 159
	5.1.3	Dual-Frame Analysis and Synthesis Computations	. 161
	5.1.4	Frame Projector and Reproducing Kernel	. 166
	5.1.5	Translation-Invariant Frames	. 168
5.:	2 Translat	ion-Invariant Dyadic Wavelet Transform	
	5.2.1	Dyadic Wavelet Design	. 172
	5.2.2	Algorithme à Trous	
5.	3 Subsam	pled Wavelet Frames	. 178
5.	4 Windov	ved Fourier Frames	. 181
	5.4.1	Tight Frames	183
	5.4.2	General Frames	184
5.	5 Multisc	ale Directional Frames for Images	. 188
	5.5.1	Directional Wavelet Frames	189
	5.5.2	Curvelet Frames	194
5.	6 Exercis	es	201
CHAPTER 6	Wavel	Wavelet Zoom	
6.	1 Lipschi	tz Regularity	205
	6.1.1	Lipschitz Definition and Fourier Analysis	
	6.1.2	Wavelet Vanishing Moments	208
	6.1.3	Regularity Measurements with Wavelets	211
6.	2 Wavele	t Transform Modulus Maxima	218
	6.2.1	Detection of Singularities	218
	6.2.2	Dyadic Maxima Representation	224
6.	3 Multisc	ale Edge Detection	230
	6.3.1	Wavelet Maxima for Images	
	6.3.2	Fast Multiscale Edge Computations	
6.	4 Multifr	actals	
	6.4.1	Fractal Sets and Self-Similar Functions	
	6.4.2	Singularity Spectrum	
	6.4.3	Fractal Noises	254
6.	5 Exercis	ses	259
CHAPTER 7		et Bases	263
7.	.1 Orthog	onal Wavelet Bases	
	7.1.1	Multiresolution Approximations	26
	7.1.2	Scaling Function	26
	7.1.3	Conjugate Mirror Filters	
	7.1.4	In Which Orthogonal Wavelets Finally Arrive	278
7.	.2 Classes	of Wavelet Bases	284
	7.2.1	Choosing a Wavelet	284

xii Contents

		7.2.2	Shannon, Meyer, Haar, and Battle-Lemarie Wavelets	
		7.2.3	Daubechies Compactly Supported Wavelets	
	7.3	Wavele	ts and Filter Banks	
		7.3.1	Fast Orthogonal Wavelet Transform	
		7.3.2	Perfect Reconstruction Filter Banks	
		7.3.3	Biorthogonal Bases of $\ell^2(\mathbb{Z})$	
	7.4	Biortho	ogonal Wavelet Bases	. 308
		7.4.1	Construction of Biorthogonal Wavelet Bases	
		7.4.2	Biorthogonal Wavelet Design	
		7.4.3	Compactly Supported Biorthogonal Wavelets	
	7.5	Wavele	t Bases on an Interval	
		7.5.1	Periodic Wavelets	
		7.5.2	Folded Wavelets	
		7.5.3	Boundary Wavelets	
	7.6	Multiso	cale Interpolations	. 328
		7.6.1	Interpolation and Sampling Theorems	. 328
		7.6.2	Interpolation Wavelet Basis	
	7.7	Separa	ble Wavelet Bases	. 338
		7.7.1	Separable Multiresolutions	
		7.7.2	Two-Dimensional Wavelet Bases	
		7.7.3	Fast Two-Dimensional Wavelet Transform	
		7.7. 4	Wavelet Bases in Higher Dimensions	. 348
	7.8	Lifting	Wavelets	
		7.8.1	Biorthogonal Bases over Nonstationary Grids	350
		7.8.2	Lifting Scheme	352
		7.8.3	Quincunx Wavelet Bases	. 359
		7.8.4	Wavelets on Bounded Domains and Surfaces	361
		7.8.5	Faster Wavelet Transform with Lifting	
	7.9	Exerci	ses	370
CHAPTER	8 8	Wave	let Packet and Local Cosine Bases	377
	8.1		et Packets	377
		8.1.1	Wavelet Packet Tree	
		8.1.2	Time-Frequency Localization	
		8.1.3	Particular Wavelet Packet Bases	388
		8.1.4	Wavelet Packet Filter Banks	393
	8.2		Wavelet Packets	
	Ŭ. -	8.2.1	Wavelet Packet Quad-Tree	395
		8.2.2	Separable Filter Banks	399
	8.3		Transforms	400
	٥.5	8.3.1	Block Bases	
		8.3.2	Cosine Bases	
		8.3.3	Discrete Cosine Bases	
		8.3.4	Fast Discrete Cosine Transforms	

	8.4	Lapped	Orthogonal Transforms	
		8.4.1	Lapped Projectors	410
		8.4.2	Lapped Orthogonal Bases	416
		8.4.3	Local Cosine Bases	
		8.4.4	Discrete Lapped Transforms	422
	8.5	Local C	osine Trees	426
		8.5.1	Binary Tree of Cosine Bases	426
		8.5.2	Tree of Discrete Bases	429
		8.5.3	Image Cosine Quad-Tree	429
	8.6	Exercise	es	432
CHAPTER	9		cimations in Bases	435
	9.1	Linear A	Approximations	435
		9.1.1	Sampling and Approximation Error	435
		9.1.2	Linear Fourier Approximations	
		9.1.3	Multiresolution Approximation Errors	
			with Wavelets	442
		9.1.4	Karhunen-Loève Approximations	446
	9.2	Nonline	ear Approximations	
		9.2.1	Nonlinear Approximation Error	451
		9.2.2	Wavelet Adaptive Grids	
		9.2.3	Approximations in Besov and Bounded	
			Variation Spaces	459
	9.3	Sparse 1	Image Representations	463
		9.3.1	Wavelet Image Approximations	464
		9.3.2	Geometric Image Models and Adaptive	
			Triangulations	471
		9.3.3	Curvelet Approximations	470
	9.4		es	
CHAPTER	10	Compr	ression	48
	10.1	Transfo	rm Coding	48
		10.1.1	Compression State of the Art	482
			Compression in Orthonormal Bases	483
	10.2	Distort	ion Rate of Quantization	48
		10.2.1	Entropy Coding	489
		10.2.2	Scalar Quantization	49
	10.3	High B	it Rate Compression	490
	10.9	10 3.1	Bit Allocation	49
		10.3.1	Optimal Basis and Karhunen-Loève	49
		10.3.2	Transparent Audio Code	50
	10.4	Sparse	Signal Compression	50
	10.T		Distortion Rate and Wavelet Image Coding	
			Embedded Transform Coding	

xiv Contents

	10.5	Image-Compression Standards	519
		10.5.1 JPEG Block Cosine Coding	519
		10.5.2 JPEG-2000 Wavelet Coding	523
	10.6	Exercises	
CHAPTER	11	Denoising	535
· · · · · · · · · · · · · · · · · · ·	11.1	Estimation with Additive Noise	
		11.1.1 Bayes Estimation	
		11.1.2 Minimax Estimation	
	11.2	Diagonal Estimation in a Basis	
		11.2.1 Diagonal Estimation with Oracles	
		11.2.2 Thresholding Estimation	
		11.2.3 Thresholding Improvements	
	11.3	Thresholding Sparse Representations	
		11.3.1 Wavelet Thresholding	
		11.3.2 Wavelet and Curvelet Image Denoising	
		11.3.3 Audio Denoising by Time-Frequency Thresholding	
	11.4	Nondiagonal Block Thresholding	
		11.4.1 Block Thresholding in Bases and Frames	
		11.4.2 Wavelet Block Thresholding	
		11.4.3 Time-Frequency Audio Block Thresholding	
	11.5	Denoising Minimax Optimality	
		11.5.1 Linear Diagonal Minimax Estimation	. 587
		11.5.2 Thresholding Optimality over	
		Orthosymmetric Sets	. 590
		11.5.3 Nearly Minimax with Wavelet Estimation	. 595
	11.6	Exercises	. 606
CHAPTER	12	Sparsity in Redundant Dictionaries	611
	12.1	Ideal Sparse Processing in Dictionaries	
		12.1.1 Best M-Term Approximations	
		12.1.2 Compression by Support Coding	. 614
		12.1.3 Denoising by Support Selection in a Dictionary	. 616
	12.2	Dictionaries of Orthonormal Bases	. 621
		12.2.1 Approximation, Compression, and Denoising	
		in a Best Basis	. 622
		12.2.2 Fast Best-Basis Search in Tree Dictionaries	. 623
		12.2.3 Wavelet Packet and Local Cosine Best Bases	. 626
		12.2.4 Bandlets for Geometric Image Regularity	. 631
	12.3	Greedy Matching Pursuits	. 642
	-	12.3.1 Matching Pursuit	. 642
		12.3.2 Orthogonal Matching Pursuit	. 648
		12.3.3 Gabor Dictionaries	
		12.3.4 Coherent Matching Pursuit Denoising	. 655

	12.4	1 ¹ Pursuits	659
		12.4.1 Basis Pursuit	659
		12.4.2 1 Lagrangian Pursuit	664
		12.4.3 Computations of 1 ¹ Minimizations	668
		12.4.4 Sparse Synthesis versus Analysis and Total	
		Variation Regularization	673
	12.5	Pursuit Recovery	677
	,	12.5.1 Stability and Incoherence	677
		12.5.2 Support Recovery with Matching Pursuit	679
		12.5.3 Support Recovery with 1 ¹ Pursuits	684
	12.6	Multichannel Signals	688
		12.6.1 Approximation and Denoising by Thresholding	
		in Bases	
		12.6.2 Multichannel Pursuits	690
	12.7	Learning Dictionaries	693
	12.8	Exercises	696
CHAPTER	12	Inverse Problems	699
CHAPTER		Linear Inverse Estimation	
	13.1	13.1.1 Quadratic and Tikhonov Regularizations	700
		13.1.1 Quadratic and Tikhohov Regularizations	702
	13.2	Thresholding Estimators for Inverse Problems	703
	15.2	13.2.1 Thresholding in Bases of Almost Singular Vectors	703
		13.2.2 Thresholding Deconvolutions	709
	13.3	Super-resolution	713
	13.3	13.3.1 Sparse Super-resolution Estimation	. 713
		13.3.2 Sparse Spike Deconvolution	. 719
		13.3.3 Recovery of Missing Data	. 722
	13.4	Compressive Sensing	. 728
	13.1	13.4.1 Incoherence with Random Measurements	. 729
		13.4.2 Approximations with Compressive Sensing	. 735
		13.4.3 Compressive Sensing Applications	. 742
	13.5	Blind Source Separation	. 744
	-	13.5.1 Blind Mixing Matrix Estimation	. 745
		13.5.2 Source Separation	. 751
	13.6	Exercises	. 752
APPEND	IX N	Nathematical Complements	. 753
Riblingra	anhv		. 765
Piningle	ihii) .		
Indov			. 795

Sparse Representations

1

Signals carry overwhelming amounts of data in which relevant information is often more difficult to find than a needle in a haystack. Processing is faster and simpler in a sparse representation where few coefficients reveal the information we are looking for. Such representations can be constructed by decomposing signals over elementary waveforms chosen in a family called a *dictionary*. But the search for the Holy Grail of an ideal sparse transform adapted to all signals is a hopeless quest. The discovery of wavelet orthogonal bases and local time-frequency dictionaries has opened the door to a huge jungle of new transforms. Adapting sparse representations to signal properties, and deriving efficient processing operators, is therefore a necessary survival strategy.

An orthogonal basis is a dictionary of minimum size that can yield a sparse representation if designed to concentrate the signal energy over a set of few vectors. This set gives a geometric signal description. Efficient signal compression and noise-reduction algorithms are then implemented with diagonal operators computed with fast algorithms. But this is not always optimal.

In natural languages, a richer dictionary helps to build shorter and more precise sentences. Similarly, dictionaries of vectors that are larger than bases are needed to build sparse representations of complex signals. But choosing is difficult and requires more complex algorithms. Sparse representations in redundant dictionaries can improve pattern recognition, compression, and noise reduction, but also the resolution of new inverse problems. This includes superresolution, source separation, and compressive sensing.

This first chapter is a sparse book representation, providing the story line and the main ideas. It gives a sense of orientation for choosing a path to travel.

1.1 COMPUTATIONAL HARMONIC ANALYSIS

Fourier and wavelet bases are the journey's starting point. They decompose signals over oscillatory waveforms that reveal many signal properties and provide a path to sparse representations. Discretized signals often have a very large size $N \ge 10^6$, and thus can only be processed by fast algorithms, typically implemented with $O(N \log N)$ operations and memories. Fourier and wavelet transforms