~ Principles of Computer
System DeS|gn

Jerome H. Saltzer =
M. Frans Kaashoek

l“ SEVIER |

ﬁéj(—T—H:'.HJi*i

RFWHENBFESNZFLBMRT] (RER)

Principles of Computer System Design

T HA ARG R

Jerome H. Saltzer
M. Frans Kaashoek

*

Massachusetts Institute of Technology

Principles of Computer System Design

Jerome H. Saltzer, M. Frans Kaashoek

ISBN: 978-0-12-374957-4

Copyright © 2009 by Elsevier. All rights reserved.

Authorized English language reprint edition published by Elsevier (Singapore) Pte Ltd and Tsinghua University
Press.

ISBN: 9789812725202

Copyright © 2009 by Elsevier (Singapore) Pte Ltd and Tsinghua University Press. All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road, #08-01 Winsland House I, Singapore 239519
Tel: (65) 6349-0200, Fax: (65) 6733-1817
First Published 2009

2009 FEIHR

Printed in China by Tsinghua University Press under special arrangement with Elsevier (Singapore) Pte Ltd. This
edition is authorized for sale in the People’s Republic of China only, excluding Hong Kong SAR and Taiwan.
Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil
and Criminal Penalties.

FFBIESCYENRH Elsevier (Singapore) Pte Ltd. B K HRRALAE b 4 A RSCAT B P I R AT
AR PRAE h 4 N RSERIEBE A CRELIE o B B AT BUX % o [& W e X) HAR BAR 8. RS
A2 H, MABREERE, B25EE Hk.

AP EME Elsevier AR B LBHIRE, iﬁﬁ%‘?ﬁ%iﬁﬁo
WRIRERE, @RISR, BIEEIREIE: 010-62782989 13701121933
B £ MR B (CIP) #1472

WH MRS BRI = Principles of Computer System Design: 33 / () BEREPE (Saltzer, J. H), (%) £
ML (Kaashoek, M. F.) . —EIA. —Jb3i: WK H R, 2009.10

CRFUHHEE HIE LB RT)D
ISBN 978-7-302-21200-3

Lodbes I @ @Fe NL BFHEH— RERH — B2k — $bt— 5 IV, TP302.1

o A B 50 CIP B3 (2009) % 173731 2
RIEENH: EHH

HARZ 1T HHERFE IR M bk JERUEEKEEEEEAE A R
http:/ /www.tup.com.cn HiR 4%: 100084
#t 2 #l: 010-62770175 BB . 010-62786544

BIWSIRERS: 010-62776969, c-service@tup.tsinghua.edu.cn
2 K 1% 010-62772015, zhiliang@tup.tsinghua.edu.cn

THHREEENRI

= RRET AR A

EEFERE

185 %230 EN3k: 35.25

2009 4£ 10 H% 1 /R ED JR: 2009 4F 10 A% 1 REVRI

1~3000

: 59.00 JG

EBUAFLESCFEARTE . WED BRTT. BT 8 T2 s o B 5, T SIE K2 KRR A R
Wk, BCRMBIE: 010-62770177 & 3103 FEERS: 035036-01

2

g1
U855 btk

B & H R D

e

BN 21 e, tHAEENEHF. BRURGEE NS ENEER. ZFHHOL
BERMAAMTS . A REREROANS, EREERFTRERE. mEHE, fF
AEFEMERANAMEY, DRAZIGEEN. BNRERSHENEMERRE, 47T
INREA B E R, BEEIELE R (e B = BER A E AR A

HHERFE BRI 1996 FFF 40, SESELHRAREG/E, BEHRT “KEHHEL
HEME GEERD” F—RF5EET, ZPIENEHEORIBASEF. BA 21 1L, &
MAENRERSHEBEMERREWPIE, ECANEME, #-PF KEEAE, K
DEBEHFAR, —mBEARIET X E KR ER TRESRAR AT EIEFT
E M2 B EE LB, AREAE “RETPENEEEISIZ LB RS RO, U
YR . RV B R A RSB BRI R L R BR BliT. EAEENLTEK,
BEZBIMR 0 BA VR FSMT ENBERIRF B, UABABE “RETEYBEFEIES
MRS GEERRD” MAEY, EEamRINENTE.

R H At

To Marlys and Matbilda

Preface

To the best of our knowledge this textbook is unique in its scope and approach. It
provides a broad and in-depth introduction to the main principles and abstractions for
engineering computer systems, be it an operating system, a client/service application,
a database system, a secure Web site, or a fault-tolerant disk cluster. These principles
and abstractions are timeless and are of value to any student or professional reader,
whether or not specializing in computer systems. The principles and abstractions
derive from insights that have proven to work over generations of computer systems,
the authors’ own experience with building computer systems, and teaching about
them for several decades.

The book teaches a broad set of principles and abstractions, yet it explores
them in depth. It captures the core of a concept using pseudocode so that readers
can test their understanding of a concrete instance of the concept. Using pseudo-
code, the book carefully documents the essence of client/service computing,
remote procedure calls, files, threads, address spaces, best-effort networks, atomic-
ity, authenticated messages, and so on.This approach continues in the problem sets,
where readers can explore the design of a wide range of systems by studying their
pseudocode.

This printed textbook is Part I of a two-part publication, containing just the
first six chapters. Part II, consisting of Chapters 7-11 and additional supporting
materials, is posted on-line as an open educational resource. For details of how and
where to find Part II on-line, see “Where to find Part II and other on-line materials”
on page Xxix.

WHY THIS TEXTBOOK?

Many fundamental ideas concerning computer systems, such as design principles,
modularity, naming, abstraction, concurrency, communications, fault tolerance, and
atomicity, are common to several of the upper-division electives of the Computer
Science and Engineering (CSE) curriculum. A typical CSE curriculum starts with two
beginning courses, one on programming and one on hardware. It then branches out,
with one of the main branches consisting of systems-oriented electives that carry
labels such as

m Operating systems m Software engineering
s Networks m Security

m Database systems m Fault tolerance

m Distributed systems m Concurrency

m Programming languages m Architecture

The primary problem with this list is that it has grown over the last three decades,
and most students interested in systems do not have the time to take all or even yjx

XX

Preface

several of those courses. The typical response is for the CSE curriculum to require
either “choose three” or “take Operating Systems plus two more”. The result is that
most students end up with no background at all in the remaining topics. In addition,
none of the electives can assume that any of the other electives have preceded it,
so common material ends up being repeated several times. Finally, students who are
not planning to specialize in systems but want to have some background have little
choice but to go into depth in one or two specialized areas.

This book cuts across all of these courses, identifying common mechanisms and
design principles, and explaining in depth a carefully chosen set of cross-cutting
ideas.This approach provides an opportunity to teach a core undergraduate course
that is accessible to all Computer Science and Engineering students, whether or
not they intend to specialize in systems. On the one hand, students who will just
be users of systems will take away a solid grounding, while on the other hand
those who plan to plan to make a career out of designing systems can learn more
advanced material more effectively through electives that have the same names as
in the list above but with more depth and less duplication. Both groups will acquire
a broad base of what the authors hope are timeless concepts rather than current
and possibly short-lived techniques.We have found this course structure to be effec-
tive at M.I.T.

The book achieves its extensive range of coverage without sacrificing intellectual
depth by focusing on underlying and timeless concepts that will serve the student
over an entire professional career, rather than providing detailed expositions of the
mechanics of operation of current systems that will soon become obsolete. A per-
vading philosophy of the book is that pedagogy takes precedence over job train-
ing. For example, the text does not teach a particular operating system or rely on
a single computer architecture. Instead it introduces models that exhibit the main
ideas found in contemporary systems, but in forms less cluttered with evolutionary
vestiges. The pedagogical model is that for someone who understands the concepts,
the detailed mechanics of operation of any particular system can easily and quickly
be acquired from other books or from the documentation of the system itself. At the
same time, the text makes concepts concrete using pseudocode fragments, so that
students have something specific to examine and to test their understanding of the
concepts.

FOR WHOM IS THIS BOOK INTENDED?

The authors intend the book for students and professionals who will

m Design computer systems.

m Supervise the design of computer systems.

m Engineer applications of computer systems to information management.
m Direct the integration of computer systems within an orgamzatxon

m Evaluate performance of computer systems.

Preface

m Keep computer systems technologically up to date.

m Go on to study individual topics such as networks, security, or transaction
management in greater depth.

m Work in other areas of computer science and engineering, but would like to
have a basic understanding of the main ideas about computer systems.

Level: This book provides an introduction to computer systems. It does not attempt
to explore every issue or get to the bottom of those issues it does explore. Instead, its
goal is for the reader to acquire insight into the complexities of the systems he or she
will be depending on for the remainder of a career as well as the concepts needed
to interact with system designers. It provides a solid foundation about the mecha-
nisms that underlie operating systems, database systems, data networks, computer
security, distributed systems, fault tolerant computing, and concurrency. By the end
of the book, the reader should in principle be able to follow the detailed engineering
of many aspects of computer systems, be prepared to read and understand current
professional literature about systems, and know what questions to ask and where to
find the answers. ;

The book can be used in several ways. It can be the basis for a one-semester,
two-quarter, or three-quarter series on computer systems. Or one or two selected
chapters can be an introduction of a traditional undergraduate elective or a graduate
course in operating systems, networks, database systems, distributed systems, security,
fault tolerance, or concurrency. Used in this way, a single book can serve a student
several times.Another possibility is that the text can be the basis for a graduate course
in systems in which students review those areas they learned as undergraduates and
fill in the areas they missed.

Prerequisites: The book carefully limits its prerequisites. When used as a textbook, it
is intended for juniors and seniors who have taken introductory courses on soft-
ware design and on computer hardware organization, but it does not require any
more advanced computer science or engineering background. It defines new terms
as it goes, and it avoids jargon, but nevertheless it also assumes that the reader has
acquired some practical experience with computer systems from a summer job or
two or from laboratory work in the prerequisite courses. It does not require that the
reader be fluent in any particular computer language, but rather be able to transfer
general knowledge about computer programming languages to the varied and some-
times ad boc programming language used in pseudocode examples.

Other Readers: Professionals should also find this book useful. It provides a modern
and forward-looking perspective on computer system design, based on enforcing
modularity. This perspective recognizes that over the last decade or two, the primary
design challenge has become that of keeping complexity under control rather than
fighting resource constraints. In addition, professionals who in college took only a
subset of the classes in computer systems or an operating systems class that focused
on resource management will find that this text refreshes them with a modern and
broader perspective.

xxii

Preface

HOW TO USE THIS BOOK

Exercises and Problem Sets: Each chapter of the textbook ends with a few short-answer
exercises intended to test understanding of some of the concepts in that chapter. At
the end of the book is a much longer collection of problem sets that challenge the
reader to apply the concepts to new and different problems similar to those that
might be encountered in the real world. In most cases, the problem sets require con-
cepts from several chapters. Each problem set identifies the chapter or chapters on
which it is focused, but later problem sets typically draw concepts from all earlier
chapters. Answers to the exercises and solutions for the problem sets are available
from the publisher in a separate book for instructors.
The exercises and problem sets can be used in several ways:

m ASs tools for learning. In this mode, the answers and solutions are available to the
student, who is encouraged to work the exercises and problem sets and come
up with answers and solutions on his or her own. By comparing those answers
and solutions with the expected ones, the student receives immediate feedback
that can correct misconceptions and can raise questions about ambiguities or
misunderstandings. One technique to encourage study of the exercises and solu-
tions is to announce that questions identical to or based on one or more of the
problem sets will appear on a forthcoming examination.

m As homework or examination material. In this mode, exercises and problem
sets are assigned as homework, and the student hands in answers that are evalu-
ated and handed back together with copies of the answers and solutions.

m As the source of ideas for new exercises and problem sets.

Case Studies and Readings: To complement the text, the reader should supplement it with
readings from the professional technical literature and with case studies. Following the
last chapter is a selected bibliography of books and papers that offer wisdom, system
design principles, and case studies surrounding the study of systems. By varying the
pace of introduction and the number and intellectual depth of the readings, the text
can be the basis for a one-term undergraduate core course, a two-term or three-quarter
undergraduate sequence, or a graduate-level introduction to computer systems.

Projects: Our experience is that for a course that touches many aspects of computer
systems, a combination of several lightweight hands-on assignments (for example,
experimentally determine the size of the caches of a personal computer or trace
asymmetrical routes through the Internet), plus one or two larger paper projects that
involve having a small team do a high-level system design (for example, in a 10-page
report design a reliable digital storage system for the Library of Congress), make an
excellent adjunct to the text. On the other hand, substantial programming projects that
require learning the insides of a particular system take so much homework time that
when combined with a broad concepts course they create an overload. Courses with
programming projects do work well in follow-on specialized electives, for example,

Preface

on operating systems, networks, databases, or distributed systems. For this reason, at
M.LT. we assign programming projects in several advanced electives but not in the
systems course that is based on this textbook.

Support: Several on-line resources provide support for this textbook.The first of these
resources is a set of course syllabi, reading lists, problem sets, videotaped lectures,
quizzes, and quiz solutions. A second resource is a Web site of the publisher that is
devoted to collecting resources and links of interest to students, professional read-
ers, and instructors. A third resource is a mostly open Web site for communication
between instructors of M.I.T. course 6.033, which uses this text, and their current stu-
dents. It contains announcements, readings, and problem assignments for the current
or most recent teaching term. In addition to current class communications, this Web
site also holds an archive going back to 1995 that includes

m Design project assignments

m Hands-on assignments

m Examinations and solutions (These overlap the exercises and problem sets of
the textbook but they also include exam questions and answers about the out-
side readings.)

m Lecture and recitation schedules

m Reading assignments and essay questions about the readings

Instructions for finding all of these on-line resources are in the section “Where to find
Part IT and other on-line materials”.

HOW THE BOOK IS ORGANIZED

Because not every instructor may want to use every chapter of the textbook, it is pre-
sented in what, at least at the time of publication, may be viewed as a somewhat novel
way: The first six chapters, which the authors consider to be the core materials for
almost any course about computer systems, appear in this printed book.The remain-
ing five chapters are available on-line from the authors and M.LT. under a Creative
Commons license that permits free, unlimited non-commercial use and remixing. The
on-line chapters are also available on the Web site of the publisher of this textbook.
There are many forward cross-references from the core chapters to the later chapters.
Those cross-references are identified as in this example: “This topic is explored in
more detail in Section 7.4.1 [on-line]”.

Themes: Three themes run through this textbook. First, as suggested by its title, the text
emphasizes the importance of systematic design principles. As each design principle
is encountered for the first time, it appears in display form with a label and a mne-
monic catchphrase. When that design principle is encountered again, it is identified
by its name and highlighted with a distinctive print format as a reminder of its wide
applicability. The design principles are also summarized on the inside front cover of
this book. A second theme is that the text is network-centered, introducing commu-
nication and networks in the beginning chapters and building on that base in the

XXiv

Preface

succeeding chapters. A third theme is that it is security-centered, introducing enforced
modularity in early chapters and adding successively more stringent enforcement
methods in succeeding chapters. The security chapter ends the book, not because it
is an afterthought, but because it is the logical culmination of a development based
on enforced modularity. Traditional texts and courses teach about threads and virtual
memory primarily as a resource allocation problem.This text approaches those topics
primarily as ways of providing and enforcing modularity, while at the same time taking
advantage of multiple processors and large address spaces.

Terminology and examples: The text identifies and develops concepts and design
principles that are common to several specialty fields: software engineering, program-
ming languages, operating systems, distributed systems, networking, database systems,
and machine architecture. Experienced computer professionals are likely to find that
at least some parts of this text use examples, ways of thinking, and terminology that
seem unusual, even foreign to their traditional ways of explaining their favorite topics.
But workers from these different specialties will compile different lists of what seems
foreign. The reason is that, historically, workers within these specialties have identi-
fied what turn out to be identical underlying concepts and design principles, but they
have used different language, different perspectives, different examples, and different
terminology to explain them.

This text chooses, for each concept, what the authors believe is the most pedagogi-
cally effective explanation and examples, adopting widely used terminology wherever
possible. In cases where different specialty areas use conflicting terms, glossaries and
sidebars provide bridges and discuss terminology collisions. The result is a novel, but
in our experience effective, way of teaching new generations of Computer Science and
Engineering students what is fundamental about computer system design.With this start-
ing point, when the student reads an advanced book or paper or takes an advanced elec-
tive course, he or she should be able to immediately recognize familiar concepts cloaked
in the terminology of the specialty A scientist would explain this approach by saying“The
physics is independent of the units of measurement” A similar principle applies to the
engineering of computer systems:“The concepts are independent of the terminology”.

Citations: The text does not use citations as a scholarly method of identifying the origi-
nators of each concept or idea; if it did, the book would be twice as thick. Instead the
citations that do appear are pointers to related materials that the authors think are
worth knowing about. There is one exception: certain sections are devoted to war sto-
ries, which may have been distorted by generations of retelling. These stories include
citations intended to identify the known sources of each story, so that the reader has
a way to assess their validity.

CHAPTER CONTENT

Relation to ACM/IEEE recommendations: The ACM/IEEE Computer Science and Engi-
neering recommendations of 2001 and 2004 describe two layers.The first layer is a set
of modules that constitute an appropriate CSE education.The second layer consists of

Preface

several suggested packagings of those modules into term-sized courses.This book may
be best viewed as a distinct, modern packaging of the modules, somewhat resembling
the ACM/IEEE Computer Science 2001 recommendation CS226¢, Operating Systems
and Networking (compressed), but with the additional scope of naming, fault toler-
ance, atomicity, and both system and network security. It also somewhat resembles
the ACM/IEEE Computer engineering 2004 recommendation CPEp203, Operating
Systems and Net-Centric computing, with the additional scope of naming, fault toler-
ance, atomicity, and cryptographic protocols.

Chapter 1: Systems. This chapter lays out the general philosophy of the authors on
ways to think about systems, with examples illustrating how computer systems are
similar to, and different from, other engineering systems. It also introduces three
main ideas: (1) the importance of systematic design principles, (2) the role of mod-
ularity in controlling complexity of large systems, and (3) methods of enforcing
modularity.

Chapter 2: Elements of Computer System Organization. This chapter introduces three
key methods of achieving and taking advantage of modularity in computer systems:
abstraction, naming,and layers. The discussion of abstraction lightly reviews computer
architecture from a systems perspective, creating a platform on which the rest of the
book builds, but without simple repetition of material that readers probably already
know. The naming model is fundamental to how computer systems are modularized,
yet it is a subject usually left to advanced texts on programming language design. The
chapter ends with a case study of the way in which naming, layering, and abstrac-
tion are applied in the unix file system. Because the case study develops as a series of
pseudocode fragments, it provides both a concrete example of the concepts of the
chapter and a basis for reference in later chapters.

Chapter 3: Design of Naming Schemes. This chapter continues the discussion of naming
in system design by introducing pragmatic engineering considerations and reinforc-
ing the role that names play in organizing a system as a collection of modules. The
chapter ends with a case study and a collection of war stories. The case study uses
the Uniform Resource Locator (URL) of the World Wide Web to show an example of
nearly every naming scheme design consideration. The war stories are examples of
failures of real-world naming systems, illustrating what goes wrong when a designer
ignores or is unaware of design considerations.

Chapter 4: Enforcing Modularity with Clients and Services. The first three chapters
developed the importance of modularity in system design. This chapter begins the
theme of enforcing that modularity by introducing the client/service model, which
is a powerful and widely used method of allowing modules to interact without
interfering with one another. This chapter also begins the network-centric perspec-
tive that pervades the rest of the book. At this point, we view the network only as
an abstract communication system that provides a strong boundary between client
and service. Two case studies again help nail down the concepts.The first is of the
Internet Domain Name System (DNS), which provides a concrete illustration of the
concepts of both Chapters 3 and 4. The second case study, that of the Sun Network

Xxvi

Preface

File System (NFS), builds on the case study of the unix file system in Chapter 2 and
illustrates the impact of remote service on the semantics of application program-
ming interfaces.

Chapter 5: Enforcing Modularity with Virtualization. This chapter switches attention to
enforcing modularity within a computer by introducing virtual memory and virtual
processors, commonly called threads. For both memory and threads, the discussion
begins with an environment that has unlimited resources. The virtual memory discus-
sion starts with an assumption of many threads operating in an unlimited address
space and then adds mechanisms to prevent threads from unintentionally interfering
with one another’s data—addressing domains and the user/kernel mode distinction.
Finally, the text examines limited address spaces, which require introducing virtual
addresses and address translation, along with the inter-address-space communication
problems that they create.

Similarly, the discussion of threads starts with the assumption that there are as
many processors as threads, and concentrates on coordinating their concurrent activi-
ties. It then moves to the case where a limited number of real processors are available,
so thread management is also required. The discussion of thread coordination uses
eventcounts and sequencers, a set of mechanisms that are not often seen in practice
but that fit the examples in a natural way. Traditionally, thread coordination is among
the hardest concepts for the first-time reader to absorb. Problem sets then invite
readers to test their understanding of the principles with semaphores and condition
variables.

The chapter explains the concepts of virtual memory and threads both in words
and in pseudocode that help clarify how the abstract ideas actually work, using famil-
iar real-world problems. In addition, the discussion of thread coordination is viewed as
the first step in understanding atomicity, which is the subject of Chapter 9 [on-line].

The chapter ends with a case study and an application. The case study explores
how enforced modularity has evolved over the years in the Intel x86 processor family.
The application is the use of virtualization to create virtual machines. The overall per-
spective of this chapter is to focus on enforcing modularity rather than on resource
management, taking maximum advantage of contemporary hardware technology, in
which processor chips are multicore,address spaces are 64 bits wide, and the amount
of directly addressable memory is measured in gigabytes.

Chapter 6: Performance. This chapter focuses on intrinsic performance bottlenecks
that are found in common across many kinds of computer systems, including oper-
ating systems, databases, networks, and large applications. It explores two of the
traditional topics of operating systems books—resource scheduling and multilevel
memory management—but in a context that emphasizes the importance of maintain-
ing perspective on performance optimization in a world where each decade brings
a thousand-fold improvement in some underlying hardware capabilities while barely
affecting other performance metrics. As an indication of this different perspec-
tive, scheduling is illustrated with a disk arm scheduling problem rather than the
usual time-sharing processor scheduler.

Preface

Chapters 7 through 11 are on-line, in Part Il of the book. Their contents are described in
the section titled “About Part II” on page 369, and information on how to locate them
can be found in “Where to find Part Il and other on-line materials”.

Suggestions for Further Reading. A selected reading list includes commentary on why
each selection is worth reading. The selection emphasis is on books and papers that
provide insight rather than materials that provide details.

Problem Sets. The authors use examinations not just as a method of assessment, but
also as a method of teaching. Therefore, some of the exercises at the end of each
chapter and the problem sets at the end of the book (all of which are derived from
examinations administered over the years while teaching the material of this text-
book) go well beyond simple practice with the concepts. In working the problems
out, the student explores alternative designs, learns about variations of techniques
seen in the textbook, and becomes familiar with interesting, sometimes exotic, ideas
and methods that have been proposed for or used in real system designs. The prob-
lem sets generally have significant setup,and they ask questions that require applying
concepts creatively, with the goal of understanding the trade-offs that arise in using
these methods.

Glossary. As mentioned earlier, the literature of computer systems derives from several
different specialties that have each developed their own dictionaries of system-related
concepts. This textbook adopts a uniform terminology throughout, and the Glossary
offers definitions of each significant term of art, indicates which chapter introduces
the term, and in many cases explains different terms used by different workers in dif-
ferent specialties. For completeness and for easy reference, the Glossary in this book
includes terms introduced in Part II.

Index of Concepts. The index tells where to find the defining discussion of every con-
cept. In addition, it lists every application of each of the design principles. (For com-
pleteness, it includes concepts that are introduced in Part II, listing just the chapter
number.)

XxXvii

Where to find Part Il and other On-line
Materials

1.

Professors Saltzer and Kaashoek and MIT OpenCourseWare* provide, free of
charge, on-line versions of Chapters 7 through 11, additional problem sets, a
copy of the glossary, and a comprehensive index in the form of one Portable
Document Format (PDF) file per chapter or section and also a single PDF file
containing the entire set. Those materials can be found at

http://ocw.mit.edu/Saltzer-Kaashoek

The publisher of this printed book also maintains a set of on-line resources at
www.ElsevierDirect.com/9780123749574

Click on the link “Companion Materials” where you will find Part II of the book
as well as other resources, including figures from the text in several formats.
Additional materials for instructors (registration required) can be found by
clicking the “Manual” link.

. Teaching and support materials can be found at

http://ocw.mit.edu/6-033

. The Web site for the current MIT class that uses this textbook, including the

archives of older teaching materials, is at
http://mit.edu/6.033

(Some copyrighted or privacy-sensitive materials on that Web site are restricted
to current MIT students.)

*The M.L.T. OpenCourseWare initiative places on-line, for non-commercial free access, teaching
materials from many M.LT. courses, and thus is helping set a standard for curricula in science and
engineering. In addition to Chapters 7 through 11, OpenCourseWare publishes on-line materials
for the M.L.T. course that uses these materials, 6.033. Thus, an instructor interested in making use
of the textbook can find in one place course syllabi, reading lists, problem sets, videotaped lectures,
quizzes, and solutions.

Acknowledgments

This textbook began as a set of notes for the advanced undergraduate course
Engineering of Computer Systems (6.033, originally 6.233), offered by the Department
of Electrical Engineering and Computer Science of the Massachusetts Institute of
Technology starting in 1968.The text has benefited from four decades of comments
and suggestions by many faculty members, visitors, recitation instructors, teaching
assistants, and students. Over 5,000 students have used (and suffered through) draft
versions,and observations of their learning experiences (as well as frequent confusion
caused by the text) have informed the writing. We are grateful for those many contri-
butions. In addition, certain aspects deserve specific acknowledgment.

1. Naming (Section 2.2 and Chapter 3)

The concept and organization of the materials on naming grew out of extensive
discussions with Michael D. Schroeder. The naming model (and part of our develop-
ment) follows closely the one developed by D. Austin Henderson in his Ph.D. thesis.
Stephen A. Ward suggested some useful generalizations of the naming model, and
Roger Needham suggested several concepts in response to an earlier version of
this material. That earlier version, including in-depth examples of the naming model
applied to addressing architectures and file systems, and an historical bibliography,
was published as Chapter 3 in Rudolf Bayer et al., editors, Operating Systems: An
Advanced Course, Lecture Notes in Computer Science 60, pages 99-208. Springer-
Verlag, 1978, reprinted 1984. Additional ideas have been contributed by many others,
including Ion Stoica, Karen Sollins, Daniel Jackson, Butler Lampson, David Karger, and
Hari Balakrishnan.

2. Enforced Modularity and Virtualization (Chapters 4 and 5)

Chapter 4 was heavily influenced by lectures on the same topic by David L.Tennenhouse.
Both chapters have been improved by substantial feedback from Hari Balakrishnan,
Russ Cox, Michael Ernst, Eddie Kohler, Chris Laas, Barbara H. Liskov, Nancy Lynch,
Samuel Madden, Robert T. Morris, Max Poletto, Martin Rinard, Susan Ruff, Gerald Jay
Sussman, Julie Sussman, and Michael Walfish.

3. Networks (Chapter 7 [on-line])

Conversations with David D. Clark and David L. Tennenhouse were instrumental in
laying out the organization of this chapter, and lectures by Clark were the basis for
part of the presentation. Robert H. Halstead Jr. wrote an early draft set of notes about
networking, and some of his ideas have also been borrowed. Hari Balakrishnan pro-
vided many suggestions and corrections and helped sort out muddled explanations,
and Julie Sussman and Susan Ruff pointed out many opportunities to improve the
presentation. The material on congestion control was developed with the help of

XXXi

xxxii

Acknowledgments

extensive discussions with Hari Balakrishnan and Robert T. Morris, and is based in
part on ideas from Raj Jain.

4. Fault Tolerance (Chapter 8 [on-linel)
Most of the concepts and examples in this chapter were originally articulated by
Claude Shannon, Edward F Moore, David Huffman, Edward J. McCluskey, Butler W.
Lampson, Daniel P. Siewiorek, and Jim N. Gray.

5. Transactions and Consistency (Chapters 9 [on-line] and 10 [on-line])

The material of the transactions and consistency chapters has been developed over
the course of four decades with aid and ideas from many sources. The concept of
version histories is due to Jack Dennis, and the particular form of all-or-nothing and
before-or-after atomicity with version histories developed here is due to David P. Reed.
Jim N. Gray not only came up with many of the ideas described in these two chapters,
he also provided extensive comments. (That doesn’t imply endorsement—he dis-
agreed strongly about the iinportance of some of the ideas!) Other helpful comments
and suggestions were made by Hari Balakrishnan, Andrew Herbert, Butler W, Lampson,
Barbara H. Liskov, Samuel R. Madden, Larry Ruddlph, Gerald Jay Sussman, and Julie
Sussman.

6. Computer Security (Chapter 11 [on-line])

Sections 11.1 and 11.6 draw heavily from the paper“The protection of information in
computer systems” by Jerome H. Saltzer and Michael D. Schroeder, Proceedings of the
IEEE 63, 9 (September, 1975), pages 1278-1308. Ronald Rivest, David Maziéres, and
Robert T. Morris made significant contributions to material presented throughout the
chapter. Brad Chen, Michael Ernst, Kevin Fu, Charles Leiserson, Susan Ruff, and Seth
Teller made numerous suggestions for improving the text.

7. Suggested Outside Readings

Ideas for suggested readings have come from many sources. Particular thanks must
g0 to Michael D. Schroeder, who uncovered several of the classic systems papers in
places outside computer science where nobody else would have thought to look;
Edward D. Lazowska, who provided an extensive reading list used at the University of
Washington; and Butler W. Lampson, who provided a thoughtful review of the list.

8. The Exercises and Problem Sets

The exercises at the end of each chapter and the problem sets at the end of the book
have been collected, suggested, tried, debugged, and revised by many different faculty
members, instructors, teaching assistants, and undergraduate students over a period
of 40 years in the process of constructing quizzes and examinations while teaching
the material of the text.

