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Lesson 1 Periodic Signals

1.1 Time-Domain Description

The fact that great majority of functions which may usefully be considered as
signals are functions of lends justification to the treatment of signal theory in terms of
time and of frequency. A periodic signal will therefore be considered to be one which
repeats itself exactly every T seconds, where T is called the period of the signal
waveform; the theoretical treatment of periodic waveforms assumes that this exact
repetition is extended throughout all time, both past and future. In practice, of course,
signals do not repeat themselves indefinitely. Nevertheless, a waveform such as the
output voltage of a mains rectifier prior to smoothing does repeat itself very many times,
and it analysis as a strictly periodic signal yields valuable results. ! In other cases, such
as the electrocardiogram, the waveform is quasi-periodic and may usefully be treated as
truly periodic for some purpose. It is worth nothing that a truly repetitive signal is of
very little interest in a communication channel, since no further information is conveyed
after the first cycle of the waveform has been received. One of the main reasons for
discussing periodic signals is that a clear understanding of their analysis is a great help
when dealing with periodic and random ones,

A complete time-domain description of such a signal involves specifying its value
precise at every instant of time. In some cases this may be done very simply using
mathematical notation. Fortunately, it is in many cases useful to describe only certain
aspects of a signal waveform, or to represent it by a mathematical formula which is only
approximate. The following aspects might be relevant in particular cases;

(1) the average value of the signal;

(2) the peak value reached by the signal;

(3) the proportion of the total time spent between value a and b;

(4) the period of the signal.

If it is desired to approximate the waveform by a mathematical expression, such as
a polynomial expansion, a Taylor series, or a Fourier series may be used. A polynomial
of order n having the form

) = as +ait+at® +a;t® + o Fa,t” (1-D
may be used to fit the actual curve at (n+1) arbitrary points. The accuracy of fit will
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generally improve as number of polynomial terms increases. 1t should also be noted that
the error bFigureetween the true signal waveform and the polynomial will normally
become very large away from the region of the fitted points, and that the polynomial
itself cannot be periodic. Whereas a polynomial approximation fits the actual waveform
at a number of arbitrary points, the alternative Taylor series approximation provides a
good {it to a smooth continuous waveform in the vicinity of one selected point. The
coefficients of the Taylor series are chosen to make the series and its derivatives agree
with the actual waveform at this point. The number of terms in the series determines to
what order of derivative this agreement will extend, and hence the accuracy with which
series and actual waveform agree in the region of point chosen. The general form of the
Taylor series for approximating a function in the region of the point is given by

df(a)  (—a)' _ dfla) df (@
& Tz N g dr

1-2

Generally speaking, the fit to the actual waveform is good in the region of the point

S = fla) 4+t —a) X

TRCET I
n.

chosen, but rapidly deteriorates to either side. The polynomial and Taylor series
descriptions of a signal waveform are therefore only to be recommended when one is
concerned to achieve accuracy over a limited region of the waveform. The accuracy
usually decreases rapidly away from this region, although it may be improved by
including additidnal terms (so long as ¢ lies within the region of convergence of the
series). -* The approximations provided by such methods are never periodic in form and
cannot therefore be considered ideal for the description of repetitive signals.

By contrast the Fourier series approximation is well suited to the representation of a
signal waveform over an extended interval. When the signal is periodic, the accuracy of
the Fourier series description is maintained for all time, since the signal is represented as
the sum of a number of sinusoidal functions, which are themselves periodic. Before
examining in detail the Fourier series method of representing a signal, the background to

what is known as the ‘frequency-domain’ approach will be introduced.

1.2 Frequency-Domain Description

The basic conception of frequency-domain analysis is that a waveform of any
complexity may be considered as the sum of a number of sinusoidal waveforms of
suitable amplitude, periodicity, and relative phase. ™ A continuous sinusoidal function
(sinwt) is thought of as a *single frequency’ wave of frequency radians second. and the

frequency-domain description of a signal involves its breakdown into a number of such

2



basic functions. This is the method of Fourier analysis.

There are a number of reasons why signal representation in terms of a set of compo-
nent sinusoidal waves occupies such a central role in signal analysis. The suitability of a
set of periodic Functions for approximating a signal waveform over an extended interval
has already been mentioned, and it will be shown later that the use of such techniques
causes the error between the actual signal and its approximation to be minimized in a
certain important sense. A further reason why sinusoidal functions are so important in
signal analysis is that they occur widely in the physical world and are very susceptible to
mathematical treatment; a large and extremely important class of electrical and mechani-
cal systems, known as ‘linear systems’, responds sinusoidally when driven by a sinu-
soidal disturbing function of any frequency. All these manifestations of sinusoidal func-
tion in the physical world suggest that signal analysis in sinusoidal terms will simplify
the problem of relating a signal to underlying physical causes, or to the physical proper-
ties of a system or device through which it has passed. Finally, sinusoidal functions
form a set of what are called ‘orthogonal function’, the rather special properties and ad-

vantage of which will now be discussed.

1.3 Orthogonal Functions

1.3.1 Vectors and signals

A discussion of orthogonal functions and of their value for the description of signals
may be conveniently introduced by considering the analogy between signals and vectors.
A vector is specified both by its magnitude and direction, familiar examples being force
and velocity. Suppose we have two V,and V,; geometrically, we define the component
of vector V, along vectorV, by constructing the perpendicular form the end of V,onto V.
We then have

\ A :C12V2 +V. (1-3

where vector V, is the error in the approximation. Clearly, this error vector is of
minimum length when it is drawn perpendicular to the direction of V,. Thus we say that
the component of vector V, along vector V; is given by C;V,, where Cy, is chosen such
as to make the error vector as small as possible. A familiar case of an orthogonal vector
system is the use of three mutually perpendicular axes in co-ordinate geometry.

There basic ideas about the comparison of vectors may be extended to signals.
Suppose we wish to approximate a signal f, () by another signal or function f, (1) over

a certain interval ¢t,<(t<(¢;; in other words,



Fi() = Cuf( for 1, <t <1,

We wish to choose C), to achieve the best approximation. If we define the error function

f) = f1o) —Cou (D (1-4
it might appear at first sight that we should choose C,, so as to minimize the average
value of f.(t) over the chosen interval. The disadvantage of such an error criterion is
that large positive and negative errors occurring at different instants would tend to
cancel each other out. This difficulty is avoided if we choose to minimize the average
squared-error, rather than the error itself (this is equivalent to minimizing the square

root of the mean-squared error ,or ‘r. m. s’ error). Denoting the average of f*(1) by e,

we have
- [ rwde Lo - ot
=TI ,1f"(t)dl ==l LA —Cpfo()Fde (1-5)
Differentiating with respect to C,, and putting the resulting expression equal to zero
gives the value of C» for which is a minimum. ™' Thus
d | 1 J"Z .~ . s
— 1) —Cpfo()]Pdey =0
i =), L@ = Cefe (0] }

Expanding the bracket and changing the order of integration and differentiating gives

Cpp = J“ﬁ(z)fg(f)dz/ff f2(0de (1-6)

1.3.2 Signal description by sets of orthogonal function

Suppose that we have approximated a signal f, (¢) over a certain interval by the
function f, (1) so that the mean square error is minimized, but that we now wish to
improve the approximation. It will be demonstrated that a very attractive approach is to
express the signal in terms of a set of function f.(¢), f. (), f;(t), etc. , which are

mutually orthogonal. Suppose the initial approximation is

f](t)%Cufg(t) 1-7
and that the error is further reduced by putting
f1(t) %Cmfg(t)‘*—C”fg([) (1-8

where f,(t) and f;(t) are orthogonal over the interval of interest, Now that we have
incorporated the additional term C; f; (), it is interesting to find what the new value of

must be in order that the mean square error is again minimized, We now have

fole) = £1() —Cy fr () —Cpi f5(DD (1-.
and the mean square error in the interval 1, <(z<(t, is therefore
e — ! (1-10)

([3 _11)J: [f](l) - C]gf‘z([) *(.‘13]{3([)]3(1[



Differentiating partially with respect to C, to find the value of C,, for which the mean

square error is again minimized, and changing the order of differentiation and

a

integration, we have again %
Ci :szl(t)fz(z)dz/Jrzfi:i(z)dz (1-1D

In order words, the decision to improve the approximation by incorporating an
additional term in does not require us to modify the coefficient, provided that f,(¢) is
orthogonal to f, (#) in the chosen time interval.!™ By precisely similar arguments we
could show that the value of C;; would be unchanged if the signal were to be
approximated by f;(¢) alone.

This important result may be extended to cover the representation of a signal in
terms of a whole set of orthogonal functions. The value of any coefficient does not
depend upon how many functions from the complete set are used in the approximation,
and is thus unaltered when further terms are included. The use of a set of orthogonal
functions for signal description is analogous to the use of three mutually perpendicular
(that is . orthogonal) axes for the description of a vector in three-dimensional space,
and gives rise to the notion of a *signal space’. ™ Accurate signal representation will
often require the use of many more than three orthogonal functions, so that we must
think of a signal within some interval ¢, <{¢#<(t, as being represented by a point in a
multidimensional space.

To summarize, therz are a number of sets of orthogonal functions available such as
the so-called Legendre polynomials and Walsh functions for the approximate description
of signal waveform, of which the sinusoidal set is the most widely used.™’ Sets
involving polynomials in ¢ are not by their very nature periodic, but may sensibly be
used to describe one cycle (or less) of a periodic waveform; outside the chosen interval,
errors between the true signal and its approximation will normally increase rapidly. A
description of one cycle of a periodic signal in terms of sinusoidal function will,

however. be equally valid for all time because of the every member of the orthogonal.

1.4 The Fourier Series
The basis of the Fourier series is that complex periodic waveform may be analyzed
into a number of harmonically related sinusoidal waves which constitute an orthogonal

set. If we have a periodic signal f(¢) with a period equal to T, then f(¢) may be
represented by the series

fl) = A, + ZA,,cosnwlt—l— ZB,,sinnwlt (1-12)
n=1 n=1



where w, = 2n/T. Thus f(t) is considered to be made up by the addition of a steady
level A to a number of sinusoidal and cosinusoidal waves of different frequencies. The
lowest of these frequencies is w, (radians per second) and is called the ‘fundamental’;
waves of this frequency have a period equal to that of the signal. Frequency 2w, is called
the ‘second harmonic’, 3w, is the ‘third harmonic’, and so on. Certain restrictions,
known as the Dirichlet conditions. must be placed upon f(¢) for the above series to be
valid. The integral [| f(¢)| dt over a complete period must be finite, and may not have
more than a finite number of discontinuities in any finite interval. Fortunately, these

conditions do not exclude any signal waveform of practical interest.

1.4.1 Evaluation of the coefficients
We know turn to the question of evaluating the coefficients A, A, and B,. Using

the minimum square error criterion described in foregoing text, and writing for the sake

of convenience., we have

A, = zlnL Fldr
A, = H £ cosnz dr (1-13)

B, — %J F(2)sinnzdx

Although in the majority of cases it is convenient for the interval of integration to be
symmetrical about the origin, any interval equal in length to one period of the signal
waveform may be chosen,

Many waveform of practical interest are either even or odd functions of time. If
f(t)is even then by definition f(2) = f(—1¢), whereas if it is odd f()=— f(—¢). I
f(1) is even and we multiply it by the odd function sinnw,t the result is also odd. Thus
the integrand for every B, is odd. Now when an odd function is integrated over an
interval symmetrical about t=0, the result is always zero. Hence all the B coefficients
are zero and we are left with a series containing only cosines. By similar arguments, if
f(t) is odd the A coefficients must be zero and we are left with a sine series. It is indeed
intuitively clear that an even function can only be built up from a number of other
functions which are themselves even , and vice versa.

We have already seen how the Fourier series is simplified in the case of an even or
odd function, by losing either its sine or its cosine terms. A different type of
simplification occurs in the case of a waveform possessing what is know as half-wave

symmetry’. In mathematical terms, half-wave symmetry exists when
6



f) =— fG+T/2) (1-14
In other words any two values of the waveform separatéd by T/2 will be equal in
magnitude and opposite in sign. Generalizing, only odd harmonics exhibit half-wave
symmetry. and therefore a waveform of any complexity which has such symmetry
cannot contain even harmonic components, Conversely, a waveform know to contain any
sccond, fourth, or other harmonic components cannot display half-wave symmetry.
Usually, we have always integrated over a complete cycle to derive the coefficients.
However in the case of an odd or even function it is sufficient, and often simpler, to
integrate over only one half of the cycle and multiply the result by 2. Furthermore if the
wave is not only even or odd but also display half-wave symmetry, it is enough to
integrate over one quarter of a cycle and multiply by 4. These closer limits are adequate
in such cases the function that is being integrated is repetitive, repeating twice within

one period when it also exhibit half-wave symmetry.

1.4.2 Choice of time origin, and waveform power

The amount of work involved in calculating the Fourier series coefficients for a
particular waveform shape is reduced if the waveform is either even or odd, and this may
often be arranged by a judicious choice of time origin (that is, shift of time origin). "%
This shift has therefore merely had the effect of converting a Fourier series containing
only sine terms into one containing only cosine terms; the amplitude of a component at
any one frequency is, as we would expect, unaltered. For a complicated waveform
which is neither even nor odd, it must be expected to include both sine and cosine terms
in its Fourier series.

As the time origin of a waveform is shifted, the various sine and cosine coefficients
of its Fourier series will change, but the sum of the squares of any two coefficients A,
and B, will remain constant, which means that the average power of the waveform, a
concept familiar to electrical engineers, is unaltered.

The above ideas lead naturally to an alternative trigonometric form the Fourier
series. If the two fundamental components of a waveform are

A ;cosw;t and Bjsinwt?

their sum may be expressed in an alternative form using trigonometric identities

A, cosw, t + B, sinw, t =/ (A? + B?) cos(w, t—tan™! %)
1

=«/(A§—}—B%)sin(wlt—tan‘1 %) (1-15)

1



Thus the sine and cosine components at a particular frequency are expressed as a single
cosine or sine wave together with a phase shift. If this procedure is applied to all

harmonic components of the Fourier series, we get the alternative forms

F() = A, + D C,cosmw,t —9,) or f() = A, + >, C,sin(nw .+ 6,)(1-16)
N=1 : N=1

where
C, =+A, + B..$, = tan '(B,’A,) .0, = tan"' (A,/B,) (a-17
Finally, we note that sine the mean power represented by any component wave is
(A, +B)/2=C/2 (1-18)

and the power represented by the term A, is simply Aj, the total average waveform

power is equal to

oAz LN )
P=Al+ 2;cn (1-19

But P may be expressed as the average value over one period of. [ f(#) ] using again the

convention that is considered to represent a voltage waveform applied across a ohm

resistor, Hence

_ AC IS v _ LT 2 5
P=at G = 3| | TroTd (1-20)

This result is a version of a more general one known as Parseval’s theorem. and shows
that the total waveform power is equal to the sum of the powers represented by its
individual Fourier components. It is, however. important to note that this is only true

because the various component waves are drawn from an orthogonal set.

Words and Expressions

accuracy [ 'sekjurasi] n. AEHAME  AEWRE BE

amplitude [ 'semplitjw:d] n. IS, 18§ EE
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integrand ['intigreend] n. LA
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Legendre polynomials #jitE L Wiz
linear ['linia] adj. k¥

main [mein]| n. B .8 1M

manifestation [ meenifes'teifon] n. M
minimum [ 'minimem | n. &/ME, &/Mb
mutually [ 'mjutfuali] adv. FHH #

notation [nsu'teifon] n. H5,id 5

odd [od] adj. #F %K. BB

ohm [oum] n. B

order [ 'oda] n. KFF. B¢

origin ['oridzin] n. JR &

orthogonal [o:'0ogenl] adj. EXXHK . BHAN
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Notes

1. Nevertheless. a waveform such as the output voltage of a mains rectifier prior 1o
smoothing does repeat itself very many times. and it analysis as a strictly periodic
signal yields valuable results.
it AR EER RS R EXREMBIE PRI ERBEEARASRERN K
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2. The accuracy usually decreases rapidly away from this region, although it may be
improved by including additional terms (so long as ¢ lies within the region of
convergence of the series),

T B e 8 K32 O 86 B 8 S R A IR R ol DUGE 2o #h 78 — SR 0T, i 2 7 Br ik
FBORE (LT FHRIRSURAD .
3. The basic conception of frequency-domain analysis is that a waveform of any

complexity may be considered as the sum of a number of sinusoidal waveforms of
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suitable amplitude, periodicity, and relative phase.
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. Differentiating with respect to C,» and putting the resulting expression equal to

zero gives the value of C,;for which is a minimum.

X Co R KL BRIER N 0, 57T LIS BME ¢ B/ Co ifH.

. Differentiating partially with respect to C,. to find the value of C,., for which the

mean square error is again minimized, and changing the order of differentiation
and integration, we have again aquation(1-11).

AT REE T REDR BN Co . 55N Co RS B8 sr 5845y
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. In order words, the decision to improve the approximation by incorporating an

additional term in does not require us to modify the coefficient C,,, provided that
f4(1) is orthogonal to f,(#) in the chosen time interval.

BEZ.0R LWO5 fHOFEFEENEEXENIER. EIHFRAR £ ORRH
MR EREREEN . RB C.ATEBLE.

. This important result may be extended to cover the representation of a signal in

terms of a whole set of orthogonal functions. The value of any coefficient does
not depend upon how many functions from the complete set are used in the
approximation, and is thus unaltered when further terms are included.
XAMEELRTLE POEABN EXRBERAFESHEL., EHfTEIE
B EMABESESTRTEZOEERAXER, B, EAQ S E S M, X
APBASHE.

. The use of a set of orthogonal functions {for signal description is analogous to the

use of three mutually perpendicular (that is. orthogonal) axes for the description
of a vector in three-dimensional space, and gives rise to the notion of a ‘signal
space’.
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. To summarize, there are a number of sets of orthogonal functions available such

as the so-called Legendre polynomials and Walsh functions for the approximate
description of signal waveform, of which the sinusoidal set is the most widely
used.
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