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PREFACE

THE OBIECTIVE OF this book is to provide the reader with a practical tool for reliability analysis of
structures. The material is intended to serve as a textbook for a one-semester course for undergraduate
seniors or graduate students with a background in structural engineering and structural mechanics.
Previous exposure to probability and statistics is helpful but not required; the most important aspects of
probability and statistics are reviewed early in the text.

Many books on reliability are written for researchers, often approaching the subject from a
mathematical and theoretical perspective. The focus of this book is on practical applications of
structural reliability theory. The basic concepts, interpretations, and equations are presented, and their
use is then demonstrated in examples. The book should be helpful to both students and practicing
structural engineers and should broaden their perspective by considering reliability as an important
dimension of structural design. In particular, the methodology discussed here is applicable in the
development of design codes, the development of more reliable designs, optimization, and the rational
evaluation of existing structures.

ORGANIZATION OF THE BOOK

Chapter 1 introduces structural reliability analysis. The objectives of the study of reliability of
structures and the sources of uncertainty inherent in structural design are discussed.

Chapter 2 briefly reviews the theory of probability and statistics. The emphasis is placed on the
definitions and formulas needed for derivation of reliability analysis procedures. The random variable
is defined and its parameters, such as the mean, median, standard deviation, coefficient of variation,
curulative distribution function, probability density function, and probability mass function, are
considered. The probability distributions commonly used in structural reliability applications are
reviewed ; these include the normal, lognormal, extreme types I, II, and III, uniform, Poisson, and
gamma distributions. A brief discussion of Bayesian methods is also included. ‘

In Chapter 3, functions of random variables are considered. Concepts and parameters such as
covariance, coefficient of correlation, and covariance matrix are described. Formulas are derived for
parameters of a function of random variables. Special cases considered in this chapter are the sum of
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uncorrelated normal random variables and the product of uncorrelated lognormal random variables.

Chapter 4 presents some simulation techniques that can be used to solve structural reliability
problems. The Monte Carlo simulation technique is the focus of this chapter. Two other methods are
also discussed the Latin hypercube sampling method and Rosenblueth’ s point estimate method.

The concepts of limit states and limit state functions are defined in Chapter 5. Reliability and
probability of failure are considered as functions of load and resistance. The fundamental structural
reliability problem is formulated. The reliability analysis methods are also presented in Chapter 5. The
simple second-moment mean value formulas are derived. Then, the Hasofer-Lind reliability index is
defined. An iterative procedure is shown for variables with full distributions available.

Load models are presented in Chapter 6. The considered load components include dead load, live
load for buildings and bridges, and environmental loads (such as wind, snow, and earthquake).
Some techniques for combining loads together in reliability analyses are also presented.

Resistance models are discussed in Chapter 7. Statistical parameters are presented for steel beams,
columns, tension members, and connections. Noncomposite and composite sections are considered.
For reinforced concrete members and prestressed concrete members, the parameters are given for
flexural capacity and shear. The results are based on the available test data and simulations.

The development of a reliability-based design code is outlined in Chapter 8. The basic steps for
finding load and resistance factors and a calibration procedure used in several recent research projects
are presented.

Chapter 9 deals with the important topic of system reliability. Useful formulas are presented for a
series system, a parallel system, and mixed systems. The effect of correlation between structural
components on the reliability of a system is evaluated. The approach to system reliability analysis is
demonstrated using simple practical examples.

Models of human error in structural design and construction are reviewed in Chapter 10. Errors
are classified with regard to mechanism of occurrence, cause, and consequences. Error survey results
are discussed. A strategy to deal with errors is considered. Special focus is placed on the sensitivity
analysis. Sensitivity functions are presented for typical structural components.
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1

INTRODUCTION

1.1 OVERVIEW

Many sources of uncertainty are inherent in structural design. Despite what we often think, the
parameters of the loading and the load-carrying capacities of structural members are not deterministic
quantities (i. e. , quantities which are perfectly known). They are random variables, and thus
absolute safety (or zero probability of failure) cannot be achieved. Consequently, structures must be
designed to serve their function with a finite probability of failure.

To illustrate the distinction between deterministic and random quantities, consider the loads
imposed on a bridge by car and truck traffic. The load on the bridge at any time depends on many
factors, such as the number of vehicles on the bridge and the weights of the vehicles. As we all know
from daily experience, cars and trucks come in many shapes and sizes. Furthermore, the number of
vehicles that pass over a bridge fluctuates, depending on the time of day. Since we don’t know the
specific details about each vehicle that passes over the bridge or the number of vehicles on the bridge at
any time, there is some uncertainty about the total load on the bridge. Hence the load is a random
variable.

Society expects buildings and bridges to be designed with a reasonable safety level. In practice,
these expectations are achieved by following code requirements specifying design values for minimum
strength, maximum allowable deflection, and so on. Code requirements have evolved to include
design criteria that take into account some of the sources of uncertainty in design. Such criteria are
often referred to as reliability-based design criteria. The objective of this book is to provide the
background needed to understand how these criteria were developed and to provide a basic tool for
structural engineers interested in applying this new approach to other situations.

The reliability of a structure is its ability to fulfill its design purpose for some specified design
lifetime. Reliability is often understood to equal the probability that a structure will not fail to perform
its intended function. The term “failure” does not necessarily mean catastrophic failure but is used to
indicate that the structure does not perform as desired.
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1.2 OBJECTIVES OF THE BOOK

This book attempts to answer the following questions:

How can we measure the safety of structures? Safety can be measured in terms of reliability or the
probability of uninterrupted operation. The complement to reliability is the probability of
failure. As we discuss in later chapters, it is often convenient to measure safety in terms of a
reliability index instead of probability.

How safe is safe enough? As mentioned earlier, it is impossible to have an absolutely safe
structure. Every structure has a certain nonzero probability of failure. Conceptually, we can
design the structure to reduce the probability of failure, but increasing the safety (or reducing
the probability of failure) beyond a certain optimum level is not always economical. This
optimum safety level has to be determined.

How does a designer implement the optimum safety level? Once the optimum safety level is
determined, appropriate design provisions must be established so that structures will be
designed accordingly. Implementation of the target reliability can be accomplished through the
development of probability-based design codes.

1.3 POSSIBLE APPLICATIONS

Structural reliability concepts can be applied to the design of new structures and the evaluation of
existing ones. A new generation of design codes is based on probabilistic models of loads and
resistances. Examples include the American Institute of Steel Construction Load and Resistance Factor
Design (LRFD) code for steel buildings ( AISC, 1986, 1994) , Ontario Highway Bridge Design Code
for bridges ( OHBDC, 1979, 1983, 1991 ), American Association of State Highway and
Transportation Officials LRFD code ( AASHTO, 1994, 1998), Canadian Highway Bridge Design
Code (1998), and many European codes (e.g. , CEC, 1984). P In general , reliability-based design
codes are efficient because they make it easier to achieve either of the following goals:

® For a given cost, design a more reliable structure.
¢ For a given reliability, design a more economical structure.

The reliability of a structure can be considered as a rational evaluation criterion. It provides a good
basis for decisions about repair, rehabilitation, or replacement. A structure can be condemned when
the nominal value of load exceeds the nominal load-carrying capacity. But in most cases a structure is
a system of components, and failure of one component does not necessarily mean failure of the
structural system. When a component reaches its ultimate capacity, it may continue to resist the load
while loads are redistributed to other components. System reliability provides a methodology to
establish the relationship between the reliability of an element and the reliability of the system.

@® Many acronyms are used in structural engineering and structural reliability. Appendix A lists acronyms used in this book.
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1.4 HISTORICAL PERSPECTIVE

Many of the current approaches to achieving structural safety evolved over many centuries. Even
ancient societies attempted to protect the interests of their citizens through regulations. The minimum
safety requirements were enforced by specifying severe penalties for builders of structures that did not
perform adequately. The earliest known building code was used in Mesopotamia. It was issued by
Hammurabi®, the king of Babylonia, who died about 1750 B.c. The “code provisions” were carved
in stone, and these stone carvings are preserved in the Louvre in Paris, France. (Figure 1.1 is a
picture of this “document. ") The responsibilities were defined depending on the consequences of
failure. If a building collapsed killing a son of the owner, then the builder’s son would be put to
death; if the owner’s slave was killed, then the builder’ s slave was executed; and so on.

For centuries, the knowledge of design and construction was passed from one generation of
builders to the next. A master builder often tried to copy a successful structure. Heavy stone arches
often had a considerable safety reserve. Attempts to increase the height or span were based on
intuition. The procedure was essentially trial and error. If a failure occurred, that particular design
was abandoned or modified.

As time passed, the laws of nature became better understood; mathematical theories of material
and structural behavior evolved, providing a more rational basis for structural design. In turn, these
theories furnished the necessary framework in which probabilistic methods could be applied to quantify
structural safety and reliability. The first mathematical formulation of the structural safety problem can
be attributed to Mayer (1926), Streletzki (1947), and Wierzbicki (1936). They recognized that
load and resistance parameters are random variables and therefore, for each structure, there is a finite
probability of failure. Their concepts were further developed by Freudenthal in the 1950s (e. g. ,
Freudenthal, 1956 ). The formulations involved convolution functions that were too difficult to
evaluate by hand. The practical applications of reliability analysis were not possible until the
pioneering work of Cornell and Lind in the late 1960s and early 1970s. Cornell proposed a second-
moment reliability index in 1969. Hasofer and Lind formulated a definition of a format-invariant
reliability index in 1974. An efficient numerical procedure was formulated for calculation of the
reliability index by Rackwitz and Fiessler (1978). Other important contributions have been made by
Ang, Veneziano, Rosenblueth, Esteva, Turkstra, Moses, Grigoriu, Der Kiuregian, Ellingwood,
Corotis, Frangopol, Fujino, Furuta, Yao, Brown, Ayyub, Blockley, Stubbs, Mathieu, Melchers,
Augusti, Shinozuka, and Wen. By the end of 1970s, the reliability methods reached a degree of
maturity, and now they are readily available for applications. They are used primarily in the
development of new design codes.

The developed theoretical work has been presented in books by Thoft-Christensen and Baker
(1982), Augusti, Barrata, and Casciati (1984) , Madsen, Krenk, and Lind (1985), Ang and Tang
(1984 ), Melchers (1987), Thoft-Christensen and Murotsu ( 1986 ), and Ayyub and McCuen
(1997), to name just a few. Other books available in the area of structural reliability include
Murzewski (1989) and Marek, Gustar, and Anagnos (1996).

It is important to note that most reliability-based codes in current use apply reliability concepts to
the design of structural members, not structural systems. In the coming years, one can expect a further

@® Hammurabi, Code of ¥ E$I 1y st
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FIGURE 1.1 The Code of Hammurabi.

The engraved image at the top shows King Hammurabi receiving
the Code from the Sun God. The code itself is inscribed on the
sides of the stone below the image.

(Photograph reproduced with permission of the Musée du
Louvre and the Réunion des Musées Nationaux Agence
Photographique. )
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acceleration in the development of analytical methods used to model the behavior of structural systems.
It is expected that this focus on system behavior will lead to additional applications of reliability theory

at the system level.

1.5 UNCERTAINTIES IN THE BUILDING PROCESS

The building process includes planning, design, construction, operation/use, and demolition. All
components of the process involve various uncertainties. These uncertainties can be put into two major
categories with regard to causes: natural and human.

Natural causes of uncertainty® result from the unpredictability of loads such as wind, earthquake,
snow, ice, water pressure, or live load. Another source of uncertainty attributable to natural
causes is the mechanical behavior of the materials used to construct the building. For example,
material properties of concrete can vary from batch to batch and also within a particular batch.

Human causes include intended and unintended departures from an optimum design. Examples of
these uncertainties during the design phase include approximations, calculation errors,
communication problems, omissions, lack of knowledge, and greed. Similarly, during the
construction phase, uncertainties arise due to the use of inadequate materials, methods of
construction, bad connections, or changes without analysis. During operation/use, the
structure can be subjected to overloading, inadequate maintenance, misuse, or even an act of
sabotage.

Because of these uncertainties, loads and resistances (i. e., load-carrying capacities of structural
elements) are random variables. It is convenient to consider a random parameter (load or resistance )
as a function of three factors:

Physical variation factor. This factor represents the variation of load and resistance that is
inherent in the quantity being considered. Examples include a natural variation of wind
pressure, earthquake, live load, and material properties.

Statistical variation factor. This factor represents uncertainty arising from estimating parameters
based on a limited sample size. In most situations, the natural variation ( physical variation
factor) is unknown and it is quantified by examining limited sample data. Therefore, the
larger the sample size, the smaller the uncertainty described by the statistical variation factor.

Model variation factor. This factor represents the uncertainty due to simplifying assumptions,
unknown boundary conditions, and unknown effects of other variables. It can be considered
as a ratio of the actual strength (test result) and strength predicted using the model.

How these three factors come into a reliability analysis is discussed in later chapters.
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