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Preface

With China’s joining the WTO and the rapid development of science
and technology in modem society, English is playing an important role in
more and more fields. The international exchange in distinct disciplines is
increasing every day. Both mathematical knowledge and foreign language
ability are required of mathematician in our times. Teaching of English for
mathematics thus becomes essential. This book is corhpiled to meet the
requirements of the students in mathematics department. It is based on
College English Curriculum(CEC) . According to CEC, the aim of college
English teaching is to cultivate students to gain strong ability of reading, a
fair ability of listening & translating and the basic mastery of skills of
writing & speaking, so that they are able to use English as a tool to obtain
new information in their field. This is also expected to lay a foundation for
the further improvement of their English ability. The book covers topics of
several main branches of mathematics. Grateful acknowledgement is pre-
sented here to the staff of School of Mathematical Science of Heilongjiang
University for their great support in the compiling process of this book.

Since the writing work was done in a rush, errors and mistakes could

hardly be avoided. Suggestions or comments are therefore very welcome.
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Math Story and Strategies

1.1 THE NUMBER =

The most famous quantity in mathematics is the ratio of the
circumference of a circle to its diameter, which is also known as the
number pi and denoted by the Greek letter ©

circumference _
diameter

The symbol 7 was not introduced until just over two hundred years
ago. The ancient Babylonians estimated this ratio as 3 and, for their
purposes, this approximation was quite sufficient. According to the
Bible, the ancient Jews used the same value of m. The earliest known
trace of an approximate value of 7 was found in the Ahmes Papyrus
written in about 16th century B.C., in which, indirectly, the number =
is referred to as equal to 3.160 5. Greek philosopher and mathematician
Archimedes, who lived about 225 B.C., estimated the value of pi to be

;—(1). Ptolemy of Alexandria (c. 150 B.C.)

gives the value of ® to be about 3. 141 6. In the far East, around 500

less than 3 %but more than 3
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A.D., a Hindu mathematician named Aryabhata, who worked out a table
of a sines, used for 7 the value 3.141 6. Tsu Chung-Chih of China, who
lived around 470, obtained that m has a value between 3. 141 592 6 and
3.141 592 7, and after him no closer calculation of ® was made for one
thousand years. The Arab Al Kashi about 1 430 obtained the amazingly
exact estimated value for w of 3. 141 592 653 589 793 2. There were
several attempts made by various mathematicians to compute the value of
7 to 140, then 200, then 500 decimal places. In 1853, William Shanks
carried the value of 7 to 707 decimal places. However, nobody seemed to
be able to give the exact value for the number 7.

What is the exact value of the number 7 A mathematician made an
experiment in order to find his own estimation of the number w. In his
experiment, he used an old bicycle wheel of diameter 63.7 cm. He
marked the point on the tire where the wheel was touching the ground and
he rolled the wheel straight ahead by tuming it 20 times. Next, he
measured the distance traveled by the wheel, which was 39.69 meters.
He divided the number 3 969 by 20 x 63.7 and obtained 3.115 384 615
as an approximation of the number w. Of course, this was just his
estimate of the number 7 and he was aware that it was not very accurate.

The problem of finding the exact value of the number n inspired
scientists and mathematicians for many centuries before it was solved in
1 761 by Johann Heinrich Lambert(1728 ~ 1777). Lambert proved that
the number 7t cannot be expressed as a fraction or written in a decimal
form using only a finite number of digits. Any such representation would
always be only an estimation of the number x. Today, we call such
numbers irrational . The ancient Greeks already knew about the existence
of irrational numbers, which they called incommensurables . For example,
they knew that the length of the diagonal of a square, with side of length
equal to one length unit, is such a value. This value, which is denoted

42 and is equal to the number x such that % =2, cannot be expressed as
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a fraction.

Today in schools we use the estimation 3. 14 for the number x, and
of course this is completely sufficient for the type of problems we discuss
in class. However, it was quickly noticed that in real life we need a
better estimate to find more accurate measurements for carrying out
construction projects, sea navigations and military applications. For most
practical purposes, no more than 10 digits of = are required. For
mathematical computation, even with astronomically precise calculations,
no more than fifty exact digits of 7 are really necessary: 3.1415926535
8979323846 2643383279 5028841971 6939937510. However, with the
power of today’ s supercomputers, we are able to compute more than
hundreds of billions of digits of the number =. You can download at the
web site http://www. verbose . net
files with the exact digits of the number 7t up to 200 million decimals. We
also have the following approximations of the number =:

3.1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620890 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912

Since the number = is the ratio of the circumference of a circle to its
diameter, we can write a formula for the circumference of a circle, which is

C=nd
where C denotes the circumference and d denotes the diameter of the

circle. If r denotes the radius of the circle then d = 2r, and we can
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rewrite the formula for the circumference as
C =2nr

Words and Expressions

quantity n. 8 ,3&

ratio n. H,HE

circumference n. B, HE

circle n. H,0,EH

the circumference of a circle E#

diameter n. HZ

the ratio of the circumference of a circle to its diameter A 5HE
Bt

denote . R, Fm

be denoted by B&RN

approximate adj. JBIEH,ERIE

approximation n. IEf {0 ; ALk ;T AU
approximate value 3 fplfH

Archimedes Fi/E K8

pi n(EER)

divide v. &, %42

fraction n. %0, /INEG AR

decimal adj. /NI THERIE n. NG
decimal form /MR

irrational adj. XK n. FHEK

irrational number FEIE¥K

length n. K, KE

diagonal n. ¥/HR adj. MNHLKK

square n. J7,EH® u. ¥H,ZKF

length of the diagonal of a square i X A& MKE
unit n. B4V, 55T



Math Story and Strategies 5

one length unit — K B 84
digit n. HF

compute v. i#

formula n. A=

radius n. ¥£

1.2 THE NUMBER e

One of the first articles which we included in the “History Topics”
section archive was on the history of . It is a very popular article and has
prompted many to ask for a similar article about the number e. There is a
great contrast between the historical developments of these two numbers
and in many ways writing a history of e is a much harder task than writing
one for x. The number e is, compared to 7, a relative newcomer on the
mathematical scene.

The number e first comes into mathematics in a very minor way.
This was in 1618 when, in an appendix to Napier’s work on logarithms,
a table appeared giving the natural logarithms of various numbers.
However, that these were logarithms to base e was not recognized since
the base to which logarithms are computed did not arise in the way that
logarithms were thought about at this time. Although we now think of
logarithms as the exponents to which one must raise the base to get the
required number, this is 8 modem way of thinking. We will come back to
this point later in this essay. This table in the appendix, although
carrying no author’s name, was almost certainly written by Oughtred. A
few years later, in 1624, again e almost made it into the mathematical
literature, but not quite. In that year Briggs gave a numerical
approximation to the base 10 logarithm of e but did not mention e itself in
his work.

The next possible occurrence of e is again dubious. In 1647 Saint
Vincent computed the area under a rectangular hyperbola. Whether he
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recognised the connection with logarithms is open to debate, and even if
he did there was little reason for him to come across the number e
explicitly. Certainly by 1661 Huygens understood the relation between the
rectangular hyperbola and the logarithm. He examined explicitly the
relation between the area under the rectangular hyperbola yx =1 and the
logarithm. Of course, the number e is such that the area under the
rectangular hyperbola from 1 to e is equal to 1. This is the property that
makes e the base of natural logarithms, but this was not understood by
mathematicians at this time, although they were slowly approaching such
an understanding.

Huygens made another advance in 1661. He defined a curve which
he calls “logarithmic” but in our terminology we would refer to it as an
exponential curve, having the form y = ka®. Again out of this comes the
logarithm to base of e, which Huygens calculated to 17 decimal places.
However, it appears as the calculation of a constant in his work and is not
recognized as the logarithm of a number (so again it is a close call but e
remains unrecognized) .

Further work on logarithms followed which still does not see the
number e appear as such, but the work does contribute to the
development of logarithms. In 1668 Nicolaus Mercator published
Logarithmotechnia which contains the series expansion of log(1+ x). In
this work Mercator uses the term “natural logarithm” for the first time for
logarithms to base e. The number e itself again fails to appear as such
and again remains elusively just round the comner.

Perhaps surprisingly, since this work on logarithms had come so
close to recognizing the number e, when e is first “discovered” it is not
through the notion of logarithm at all but rather through a study of
compound interest. In 1683 Jacob Bernoulli looked at the problem of

compound interest and, in examining continuous compound interest, he
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tried to find the limit of ( 1 +"1‘;) as n tends to infinity. He used the

binomial theorem to show that the limit had to lie between 2 and 3 so we
could consider this to be the first approximation found to e. Also if we
accept this as a definition of e, it is the first time that a number was
defined by a limiting process. He certainly did not recognise any
connection between his work and that on logarithms.

We mentioned above that logarithms were not thought of in the early
years of their development as having any connection with exponents. Of
course from the equation x = @', we deduce that ¢ = log, ¥ where the log
is to base a, but this involves a much later way of thinking. Here we are
really thinking of log as a function, while early workers in logarithms
thought purely of the log as a number which aided calculation. It may
have been Jacob Bemoulli who first understood the way that the log
function is the inverse of the exponential function. On the other hand the
first person to make the connection between logarithms and exponents may
well have been James Gregory. In 1684 he certainly recognized the
connection between logarithms and exponents, but he may not have been
the first.

As far as we know the first time the number e appears in its own
right is in 1690. In that year Leibniz wrote a letter to Huygens and in this
he used the notation b for what we now call e. At last the number e had
a name (even if not its present one) and it was recognized. Now the
reader might ask, not unreasonably, why we have not started our article
on the history of e at the point where it makes its first appearance. The
reason is that although the work we have described previously never quite
managed to identify e, once the number was identified then it was slowly
realised that this earlier work is relevant. Retrospectively, the early
developments on the logarithm became part of an understanding of the
number e.
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We mentioned above the problems arising from the fact that log was
not thought of as a function. It would be fair to say that Johann Bernoull
began the study of the calculus of the exponential function in 1697 when
he published Principia calculi exponentialum seu percurrentiuw . The work
involves the calculation of various exponential series and many results are
achieved with term by term integration.

So much of our mathematical notation is due to Euler that it will
come as no surprise to find that the notation e for this number is due to
him. The claim which has sometimes been made, however, that Euler
used the letter e because it was the first letter of his name is ridiculous.
It is probably not even the case that the e comes from “exponential”, but
it may have just be the next vowel after “a” and Euler was already using
the notation “a” in his work. Whatever the reason, the notation e made
its first appearance in a letter Euler wrote to Goldbach in 1731. He made
various discoveries regarding e in the following years, but it was not until
1748 when Euler published Introduction in Analysin infinitorum that he
gave a full treatment of the ideas surrounding e. He showed that

1 1 1
e=l+l—!+2—!+'3-i+"'

and that e is the limit of ( 1+ —:L‘) as n tends to infinity. Euler gave an

approximation for e to 18 decimal places

e=2.718 281 828 459 045 235
without saying where this came from. It is likely that he calculated the
value himself, but if so there is no indication of how this was done. In

fact taking about 20 terms of 1 + IIT + 2—1' + §l—| + -+ will give the accuracy

which Euler gave. Among other interesting results in this work is the

connection between the sine and cosine functions and the complex

exponential function, which Euler deduced using De Moivre’s formula.
Interestingly Euler also gave the continued fraction expansion of e
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and noted a pattem in the expansion. In particular he gave

e—1_ 1
2 1+ 1
1
6+ 1
10+ 1
14+18+---
and
e-1=1+ ll
1+
1
2+
1
1+
1
1+ I
44+
1
1+
1+—1—
6+

Euler did not give a proof that the patterns he spotted continue
(which they do) but he knew that if such a proof were given it would

Ce . . . e-1
prove that e is irrational. For, if the continued fraction for 5 were to

follow the pattern shown in the first few tems, 6, 10, 14, 18, 22, 26,

-+ (add 4 each time) then it will never terminate so ezl (and so e)
2

cannot be rational. One could certainly see this as the first attempt to
prove that e is not rational .

The same passion that drove people to calculate to more and more
decimal places of x never seemed to take hold in quite the same way for
e. There were those who did calculate its decimal expansion, however,
and the first to give e to a large number of decimal places was Shanks in
1854. It is worth noting that Shanks was an even more enthusiastic
calculator of the decimal expansion of x. Glaisher showed that the first
137 places of Shanks calculations for e were correct but found an error
which, after correction by Shanks, gave e to 205 places. In fact one
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needs about 120 terms of1+l—1| +2—1| +3—1| + *** to obtain e correct to

200 places.

Further calculations of decimal expansions followed. In 1884
Dooman calculated e to 346 places and found that his calculation agreed
with that of Shanks as far as place 187 but then became different. In
1887 Adams calculated the base 10 log of e to 272 places.

Words and Expressions

prompt adj. REM, BIEK; BIETH, TRIM o, WA, 0. BN
appendix n. His#,HEY

occurrence n. K4 ;E4

explicitly adv. Biffsh

rectangular odj. RN, KK, HAN
rectangular hyperbola %R , H AL
terminology n. Rif,%[14iA

dubious adj. fREERY, FIEEM

elusively adv. XEfiih, 4 A B
process n. 3R e, SR

limiting process 1% fRid 7

deduce vt. B, W

log funtion 5% %

exponential function ¥ %
exponential series ¥
retrospectively adv. [EfR

accuracy n. B, NEWHRL; HERR , MERA T
sine n. E

sine function iF 3% &3

cosine n. R3%

cosine function 4% & ¥
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complex exponential function % ¥

De Moivre’s formula - B /A=

terminate adj. HRH, FERH v, KIE,G0K vi. HRER/R
enthusiastic adj. #.08), HEHREH

enthusiastic calculator M ELRTHH

1.3 INEQUALITIES FOR CONVEX FUNCTION

Convex functions

Convex functions are powerful tools for proving a large class of
inequalities. They provide an elegant and unified treatment of the most

important classical inequalities.
A real-valued function on an interval 7 is called convex if
Sz +(1-2)y) <2f(x) + (1-2)f(y) (1)
for every x,y€ I and A€ [0,1]; it is called strictly convex if
fGx+(1-2)y) <af(2) + (1-2)f(y) (2)

for every x,y&C I, x5y and A€ (0,1).
Notice

f is called concave (strictly concave) on I if - f is convex ( strictly
convex) on 1.

The geometrical meaning of convexity is clear: f is strictly convex if
and only if for every two points P = (x,f(x)) and Q = (y,f(y)) on
the graph of f, the point R = (z,f(z)) lies below the segment PQ for
every z between x and y.

How to recognize a convex function without the graph? We can use
(1)directly, but the following criterion is often very useful;

Test for Convexity

Let f be a twice differentiable function on 7. Then f is convex on I



