Education KFITEHNBBEEINIEZEMZT (RZEDRR)

PARALLEL PROGRAMMING
IN C WITH MPI' AND OPENMP

FHITER XL

C. MPI50penMP

Michael J. Quinn & .

AEXRF R

| mar G INIREREFNFRF EHES

SafAl | EL PRCGRANA NG
M CWITH MA AND CFERRP

FITREFIRiT

C. MPISF0OpanMP

KEFETENH T E S E LB RT(FHIR)

Parallel Programming
in C with MPI and OpenMP

)
C.MPI 5 OpenMP

Michael J. Quinn

FHEXEHMRH
E| A)

Michael J. Quinn
Paraliel Programming in C with MPI and OpenMP
EISBN; 0-07-282256-2

Copyright © 2004 by The McGraw-Hill Companies, Inc.
Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of

this publication may be reproduced or distributed by any means, or stored in a database or retrieval

system, without the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and
Tsinghua University Press. This edition is authorized for sale only to the educational and training in-
stitutions, and within the territory of the People’ s Republic of China (excluding Hong Kong, Macao
SAR and Taiwan). Unauthorized export of this edition is a violation of the Copyright Act. Violation
of this Law is subject to Civil and Criminal Penalties.

245 30 SR B B AR KA R AN - R AR () A R &R JEAR
A(LBRAE A RS E N (R 15 R B HF W BT SIT B R P E GBI X
B RIBIHMZRE, REFT2ZH O, B REEGE BRERZHE,
K2R TG BEET, A8 LMEM 7 RE R R R A BRI,

SHEBAREERAREIET EF: 0120050654 5

BRILERE, BED4A3, HIRMIE: 01062782989 13501256678 13801310933
AR HEWE McGraw-Hill 2T Bh15%E, EHFEEFBNE,

A HIERRS B (CIP) 8

HATRF Rt : C MPL5 OpenMP 33/ (%) (Quinn, M. J.) 3F . —REIA. —IL5:
WK R, 2005.8

(KRR ESE R BRI

ISBN 7-302-11157-X

3 I % I #ABRF—ERFR— RSk —%3 V. TP 11
o3[A P 3 CIP MO B (2005) 8 058944 5

H R & HEREHRBR b JEEEEREETAE
http ; //www. tup. com. cn [# . 100024
4t E 4. 010-62770175 RS 010-62776969

+ ALE Rt ERRI T '

: T HE T

: BAEAE BRI KT

. 148 x210 EP3K. 16.875

L2005 4E8 A 1R 2005 4£ 8 F%5 1 KEDRY

. ISBN 7-302-11157-X/TP - 7373

: 1 ~3000

. 33.00 ¢

=

T8
S g0 57 B Bk Dk ik

Bl 2 HHCHRRD

tH hi i AR

HA2 g, HASENETF. BRUREEEINESRKE
iz, EEHPLEERMAANESR. BHAKBRRERMA
7, EMEEREFPERBHY. BREHE, EVEFRERREALANE
W, LRZFIFEER. BRESFEENEMEHBE, HTm
REMOEFHRE, BEREEXNRIAREERXAEIER
it

HHRRF DR 1996 £ R, SESELHBAFEE, &
TR T “ KRFTENEEAB(RER) " F— K55 #EH, 27
ENEENWEAERF, BA2 HE, RINAEHNREBRSHETH
MRERSHIE, ECENEM L, #—5T KEEHNE, XEHE
BHAERY, —mBREBEEXERIEEH TRERSSE AR
A ENEFT IR BRI E R BN, AREETEHTEHNE
FEAAZZBEMRII(RAR)”, URIEE, BUIHBREE R
AERFIEMOBRMBELRRARI]. EFBEALTER. HBFR
ERIEREIMNTENBERNRAEEMS, URRITIE KFTENH
BFEIEZBM R (HER) "HEELT, FEABRMENTE,

K A

PREFACE

the MPI (Message Passing Interface) library and the OpenMP applica-

tion programming interface. It is targeted to upper-division undergradu-
ate students, beginning graduate students, and computer professionals leaming
this material on their own. It assumes the reader has a good background in C
programming and has had an introductory class in the analysis of algorithms.

Fortran programmers interested in parallel programming can also benefit
from this text. While the examples in the book are in C, the underlying concepts
of paralle! programming with MPI and OpenMP are essentially the same for both
C and Fortran programmers.

In the past twenty years I have taught paralle! programming to hundreds
of undergraduate and graduate students. In the process I have learned a great
deal about the sorts of problems people encounter when they begin “thinking in
parallel” and writing parallel programs. Students benefit from seeing programs
designed and implemented step by step. My philosophy is to introduce new func-
tionality “just in time.” As much as possible, every new concept appears in the
context of solving a design, implementation, or analysis problem. When you see

the symbol
O—r

in a page margin, you’ll know I'm presenting a key concept.

The first two chapters explain when and why parallel computing began and
gives a high-level overview of parallel architectures. Chapter 3 presents Foster’s
parallel algorithm design methodology and shows how it is used through several
case studies. Chapters 4, 5, 6, 8, and 9 demonstrate how to use the design method-
ology to develop MPI programs that solve a series of progressively more difficult
programming problems. The 27 MPI functions presented in these chapters are a
robust enough subset to implement parallel programs for a wide variety of appli-
cations. These chapters also introduce functions that simplify matrix and vector
1/0. The source code for this 1/0 library appears in Appendix B.

The programs of Chapters 4, 5, 6, and 8 have been benchmarked on acommod-
ity cluster of microprocessors, and these results appear in the text. Because new
generations of microprocessors appear much faster than books can be produced,
readers will observe that the processors are several generations old. The point of
presenting the results is not to amaze the reader with the speed of the computa-
tions. Rather, the purpose of the benchmarking is to demonstrate that knowledge
of the latency and bandwidth of the interconnection network, combined with in-
formation about the performance of a sequential program, are often sufficient to -
allow reasonably accurate predictions of the performance of a parallel program.

T his book is a practical introduction to paraliel programming in C using

Preface

Chapter 7 focuses on four metrics for analyzing and predicting the perfor-
mance of parallel systems: Amdahl’s Law, Gustafson-Barsis’ Law, the Karp-Flatt
metric, and the isoefficiency metric.

Chapters 10-16 provide additional examples of how to analyze a problem
and design a good parallel algorithm to solve it. At this point the development of
MPI programs implementing the parallel algorithms is left to the reader. I present
Monte Carlo methods and the challenges associated with parallel random number
generation. Later chapters present a variety of key algorithms: matrix multipli-
cation, Gaussian elimination, the conjugate gradient method, finite difference
methods, sorting, the fast Fourier transform, backtrack search, branch-and-bound
search, and alpha-beta search.

Chapters 17 and 18 are an introduction to the new shared-memory program-
ming standard OpenMP. I present the features of OpenMP as needed to convert
sequential code segments into paralle] ones. I use two case studies to demonstrate
the process of transforming MPI programs into hybrid MPI/OpenMP programs
that can exhibit higher performance on multiprocessor clusters than programs
based solely on MPI.

This book has more than enough material for a one-semester course in par-
allel programming. While parallel programming is more demanding than typical
programming, it is also more rewarding. Even with a teacher’s instruction and
support, most students are unnerved at the prospect of harnessing multiple pro-
cessors to perform a single task. However, this fear is transformed into a feeling
of genuine accomplishment when they see their debugged programs run much
faster than “ordinary” C programs. For this reason, programming assignments
should play a central role in the course.

Fortunately, parallel computers are more accessible than ever. If acommercial
parallel computer is not available, it is a straightforward task to build a small
cluster out of a few PCs, networking equipment, and free software.

Figure P.1 illustrates the precedence relations among the chapters. A solid
arrow from A to B indicates chapter B depends heavily upon material presented
in chapter A. A dashed arrow from A to B indicates a weak dependence. If
you cover the chapters in numerical order, you will satisfy all of these prece-
dences. However, if you would like your students to start programming in C with
MPI as quickly as possible, you may wish to skip Chapter 2 or only cover one
or two sections of it. If you wish to focus on numerical algorithms, you may
wish to skip Chapter 5 and introduce students to the function MPI_Bcast in
another way. If you would like to start by having your students programming
Monte Carlo algorithms, you can jump to Chapter 10 immediately after Chapter
4. If you want to cover OpenMP before MPL, you can jump to Chapter 17 after
Chapter 3.

I thank everyone at McGraw-Hill who helped me create this book, espe-
cially Betsy Jones, Michelle Flomenhoft, and Kay Brimeyer. Thank you for your
sponsorship, encouragement, and assistance. I also appreciate the help provided
by Maggie Murphy and the rest of the compositors at Interactive Composition
Corporation.

xill

xiv

Preface

Figure P.1 Dependences among the chapters. A solid arrow
indicates a strong dependence; a dashed arrow indicates a weak
dependence.

I am indebted to the reviewers who carefully read the manuscript, correcting
errors, pointing out weak spots, and suggesting additional topics. My thanks
to: A. P. W. Bohm, Colorado State University; Thomas Cormen, Dartmouth
College; Narsingh Deo, University of Central Florida; Philip J. Hatcher,
University of New Hampshire; Nickolas S. Jovanovic, University of Arkansas
at Little Rock; Dinesh Mehta, Colorado School of Mines; Zina Ben Miled,
Indiana University-Purdue University, Indianapolis; Paul E. Plassman,
Pennsylvania State University; Quinn O. Snell, Brigham Young University;
Ashok Srinivasan, Florida State University; Xian-He Sun, Illinois Institute of
Technology; Virgil Wallentine, Kansas State University; Bob Weems, Univer-
sity of Texas at Arlington; Kay Zemoudel, California State University-San
Bernardino; and Jun Zhang, University of Kentucky.

Many people at Oregon State University also lent me a hand. Rubin Landau
and Henri Jansen helped me understand Monte Carlo algorithms and the detailed
balance condition, respectively. Students Charles Sauerbier and Bernd Michael
Kelm suggested questions that made their way into the text. Tim Budd showed
me how to incorporate PostScript figures into LaTeX documents. Jalal Haddad
provided technical support. Thank you for your help!

Finally, I am grateful to my wife, Victoria, for encouraging me to get back
into textbook writing. Thanks for the inspiring Christmas present: Chicken Soup
forthe Writer's Soul: Stories to Open the Heart and Rekindle the Spirit of Writers.

Michael J. Quinn
Corvallis, Oregon

CONTENTS

Preface xiv

cHaprTER ¥

Motivation and History 1

1.1 Introduction 1

1.2 Modern Scientific Method 3

1.3 Evolution of Supercomputing 4

14 Modern Parallel Computers §
L4.1 The Cosmic Cube 6

142 Commercial Parallel
Computers 6

143 Beowulf 7
1.4.4 Advanced Strategic Computing
Initiative 8
LS Seeking Concurrency 9
1.5.1 Data Dependence Graphs 9
152 Data Parallelism 10
153 Functional Parallelism 10
154 Pipelining 12
1.5.5 Size Considerations 13
L6 DataClustering 14
L7 Programming Parallel Computers 17
171 Extend a Compiler 17
1.7.2 Extend a Sequential Programming
Language 18

1.7.3 Add a Parallel Programming
Layer 19

1.7.4 Create a Parallel Language 19
17.5 Current Staus 21

1.8 Summary 21

19 KeyTerms 22

1.10 Bibliographic Notes 22

1.11 Exercises 23

CHAPTER 2
Parallel Architectures 27

21
22

23

25

26

Introduction 27
Interconnection Networks 28

2.2.1 Shared versus Switched
Media 28

2.2.2 Switch Network Topologies 29

223 2-D Mesh Network 29

2.24 Binary Tree Network 30

2.2.5 Hypertree Network 31

2.2.6 Bunerfly Network 32

2.2.7 Hypercube Network 33

228 Shuffle-exchange Network 35

229 Summary 36

Processor Arrays 37

2.3.1 Architecture and Data-paralle!
Operations 37

2.3.2 Processor Array Performance 39

2.3.3 Processor Interconnection Network 40

2.34 Enabling and Disabling Processors 40

2.35 Additional Architectural Features 42

2.3.6 Shortcomings of Processor Arrays 42

Multiprocessors 43

241 Centralized Multiprocessors 43

242 Distributed Multiprocessors 45

Multicomputers 49

2.5.1 Asymmetrical Multicomputers 49

2.52 Symmetrical Multicomputers 51

2.53 Which Model Is Best for a Commodity
Cluster? 52

2.5.4 Differences between Clusters and
Networks of Workstations 53

Flynn'’s Taxonomy 54

261 SISD 54

262 SIMD 55

vi Contents

2.63 MISD 55 39 KeyTerms 90
2.64 MIMD 56 3.10 Bibliographic Notes 90
27 Summary 58 3.11 Exercises 90

28 KeyTerms 59
29 Bibliographic Notes 59

]
2.10 Exercises 60 CHAPTER 4

Message-Passing Programming 93
4.1 Introduction 93

CHAPTER 3 42 The Message-Passing Model 94
Parallel Algorithm Design 63 43 The Message-Passing Interface 95
3.1 Introduction 63 44 Circuit Satisfiability 96

32 The Task/Channel Model 63 44.1 Function MPI_Init 99

3.3 Foster’s Design Methodology 64 442 Functions MPI_Comm_rank and

MPI_Comm_size 99
443 FunctionMPI_Finalize 10!
333 Agglomeration 68 4.4.4 Compiling MPI Programs 102
334 Mapping 70 4.4.5 Running MPI Programs 102
34 Boundary Value Problem 73 45 Introducing Collective
341 Introduction 73 Communication 104
3.42 Partitioning 75 4.5.1 Function MPI_Reduce 105
343 Communication 75 4.6 Benchmarking Parallel Performance 108
344 Agglomeration and Mapping 76 4.6.1 Functions MPI_Wt ime and
345 Avabysis 76 MPI_Wtick 108
35 Finding the Maximum 77’ 4.6.2 Function MPI_Barrier 108

3.5.1 Imtroduction 77 47 Summary 110
352 Panitioning 77 48 KeyTerms 110

353 Communication 77 4.9 Bibliographic Notes 110
3.5.4 Agglomeration and Mapping 81 410 Exercises 111
3.5.5 Analysis 82

36 The n-Body Problem 82

3.3.1 Partitioning 65
3.3.2 Communication 67

3.6.1 Introduction 82 chapren B
362 Partitioning 83 The Sieve of Eratosthenes 115
3.6.3 Communication 83 8.1 Introduction 115
3.6.4 Agglomeration and Mapping 85 §2 Sequential Algorithm 115
3.6.5 Analysis 85 8.3 Sources of Parallelism 117

3.7 Adding DataInput 86 54 Data Decomposition Options 117
3.7.1 Introduction 86 5.4.1 Interleaved Data Decomposition 118
3.7.2 Communication 87 5.4.2 Block Data Decomposition 118
3.7.3 Analysis 88 5.4.3 Block Decomposition Macros 120

38 Summary 89 5.44 Local Index versus Global Index 120

5.4.5 Ramifications of Block
Decomposition 121

5.5 Developing the Parallel Algorithm 121
5.5.1 Function MPI_Bcast 122
5.6 Analysis of Parallel Sieve Algorithm 122
5.7 Documenting the Parallel Program 123
5.8 Benchmarking 128
$.9 Improvements 129
5.9.1 Delete Even Integers 129
5.9.2 Eliminate Broadcast 130
5.9.3 Reorganize Loops 131
594 Benchmarking 131
510 Summary 133
5.11 Key Terms 134
5.12 Bibliographic Notes 134
5.13 Exercises 134
CHAPTER 6

Floyd's Algorithm 137

6.1
6.2

6.3
6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11

Introduction 137

The All-Pairs Shortest-Path

Problem 137

Creating Arrays at Run Time 139
Designing the Parallel Algorithm 140
6.4.1 Partitioning 140

6.42 Communication 141

6.4.3 Agglomeration and Mapping 142
6.4.4 Matrix Input/Ousput 143
Point-to-Point Communication 145
6.5.1 Function MPI_Send 146
6.5.2 Function MPI_Recv 147
6.5.3 Deadlock 148

Documenting the Parallel
Program 149

Analysis and Benchmarking 151
Summary 154

Key Terms 154

Bibliographic Notes 154
Exercises 154

Contents vii

CHAPTER T
Performance Analysis 159

7.1 Introduction 159
7.2 Speedup and Efficiency 159
7.3 Amdahl’s Law 161
7.3.1 Limitations of Amdahl’s Law 164
7.3.2 The Amdahl Effect 164
74 Gustafson-Barsis’'s Law 164
7.5 The Karp-Flatt Metric 167
7.6 The Isoefficiency Metric 170
7.7 Summary 174
78 KeyTerms 175
7.9 Bibliographic Notes 175
7.10 Exercises 176

CHAPTER 8
Matrix-Vector Multiplication 178

8.1 Introduction 178

8.2 Sequential Algorithm 179

8.3 Data Decomposition Options 180

84 Rowwise Block-Striped
Decomposition 181
84.1 Design and Analysis 181
842 ' Replicating a Block-Mapped Vector 183
84.3 Function MPI_Allgatherv [84
8.44 Replicated Vector Input/Output 186
84.5 Documenting the Parallel Program 187
84.6 Benchmarking 187

8.5 Columpwise Block-Striped
Decomposition 189
8.5.1 Design and Analysis 189

8.5.2 Reading a Columnwise Block-Striped
Matrix 191

Function MPI_Scatterv 191

Printing a Columnwise Block-Striped
Matrix 193

Function MPI_Gatherv 193
Distributing Partial Results 195

853
854

8.5.5
85.6

vili

8.6

8.7
838
89

Contents

8.5.7 FunctionMPI_Alltoallv 195

8.5.8 Documenting the Parallel Program 196
8.5.9 Benchmarking 198
Checkerboard Block Decomposition
8.6.1 Design and Analysis 199
8.6.2 Creating a Communicator 202
8.6.3
8.64
8.6.5
8.6.6
8.6.7

19

203
Function MPI_Cart_create 204
Reading a Checkerboard Matrix 205
Function MPI_Cart_rank 205
Function MPI_Cart_coords 207
8.6.8 Function MPI_Comm_split 207
8.6.9 Benchmarking 208

Summary 210

Key Terms 211

Bibliographic Notes 211

Function MPI_Dims_create

8.10 Exercises 211

CHAPTER ®

Document Classification 216

9.1
9.2

9.3

94
9.5

. 922

Introduction 216

Paralle] Algorithm Design 217
9.2.1 Partitioning and Communication 217
Agglomeration and Mapping 217
Manager/Worker Paradigm 218
Manager Process 219

Function MPI_Abort 220

Worker Process 221

Creating a Workers-only
Communicator 223

Nonblocking Communications 223
9.3.1 Manager's Communication 224
9.3.2 Function MPI_Irecv 224

9.3.3 Function MPI_Wait 225

9.3.4 Workers’ Communications 225
9.3.5 Function MPI_Isend 225

9.3.6 Function MPI_Probe 225

9.3.7 Function MPI_Get_count 226
Documenting the Parallel Program 226
Enhancements 232

9.2.3
924
925
9.2.6
9.2.7

9.5.1 Assigning Groups of Documents 232
9.5.2 Pipelining 232
9.5.3 Function MPI_Testsome 234

96 Summary 235

9.7 KeyTerms 236

98 Bibliographic Notes 236
99 Exercises 236
cHarTer 10

Monte Carlo Methods 239

10.1

10.2

10.3

104

10.5

10.6
10.7
10.8
10.9

Introduction 239
10.1.1 Why Monte Carlo Works 240

10.1.2 Monte Carlo and Parallel
Computing 243
Sequential Random Number
Generators 243
10.2.1 Linear Congruential 244
10.2.2 Lagged Fibonacci 245
Parallel Random Number Generators 245
10.3.1 Manager-Worker Method 246
1032 Leapfrog Method 246
10.3.3 Sequence Splitting 247
10.3.4 Parameterization 248
Other Random Number Distributions 248

10.4.1 Inverse Cumulative Distribution Function
Transformation 249

10.4.2 Box-Muller Transformation 250
1043 The Rejection Method 251
Case Studies 253

10.5.1
10.5.2

Neutron Transport 253

Temperature at a Point Inside
a2-D Plate 255

Two-Dimensional Ising Model 257
Room Assignment Problem 259
1055 Parking Garage 262

10.5.6 Traffic Circle 264

Summary 268

Key Terms 269

Bibliographic Notes 269

Exercises 270

1053
1054

cHarTeEr 11
Matrix Multiplication 273

11.1
11.2

11.3

114

115
116
11.7
11.8

Introduction 273
Sequential Matrix Multiplication 274

11.2.1 Iterative, Row-Oriented
Algorithm 274

11.2.2 Recursive, Block-Oriented
Algorithm 275

Rowwise Block-Striped Parallel
Algorithm 277

11.3.1 Identifying Primitive Tasks 277
11.3.2 Agglomeration 278

11.3.3 Communication and Further
Agglomeration 279

11.34 Analysis 279
Cannon’s Algorithm 281
11.4.1 Agglomeration 281
1142 Communication 283
11,43 Analysis 284
Summary 286

Key Terms 287
Bibliographic Notes 287
Exercises 287

cHaprTeER 12
Solving Linear Systems 230

12.1
12.2
123

124

Introduction 290

Terminology 291

Back Substitution 292

12.3.1 Sequential Algorithm 292

12.3.2 Row-Oriented Parallel Algorithm 293

1233 Column-Oriented Parallel
Algorithm 295

12.3.4 Comparison 295

Gaussian Elimination 296

12.4.1 Sequential Algorithm - 296
12.4.2 Parallel Algorithms 298

12.43 Row-Oriented Algorithm 299
12.44 Column-Oriented Algorithm 303

125
126

12.7
12.8
12.9
12.10

Contents ix

1245 Comparison 303

12.4.6 Pipelined, Row-Oriented Algorithm
Iterative Methods 306

The Conjugate Gradient Method 309
12.6.1 Sequential Algorithm 309
12.6.2 Farallel Implementation 310
Summary 313

Key Terms 314

Bibliographic Notes 314

314

304

Exercises

cHAPTER 13
Finite Difference Methods 318

13.1
13.2

133

134

13.5
13.6
13.7
13.8

Introduction 318

Partial Differential Equations 320

13.2.1 Categorizing PDEs 320

13.2.2 Difference Quotients 321
Vibrating String 322

13.3.1 Deriving Equations 322

13.3.2 Deriving the Sequential Program 323
13.3.3 Parallel Program Design 324
13.3.4 Isoefficiency Analysis 327
13.3.5 Replicating Computations 327
Steady-State Heat Distribution 329
13.4.1 Deriving Equations 329
13.4.2 Deriving the Sequential Program
1343 Farallel Program Design 332
13.44 Isoefficiency Analysis 332
13.4.5 Implementation Details 334
Summary 334

Key Terms 335

Bibliographic Notes 335
Exercises 335

330

cHarTER 14
Sorting 338

14.1
4.2

Introduction 338
Quicksort 339

143

14.4

14.5

14.6
14.7
14.8
14.9

Contents

A Parallel Quicksort Algorithm 340
14.3.1 Definition of Sorted 340
14.3.2 Algorithm Development 341
14.3.3 Analysis 341
Hyperquicksort 343

14.4.1 Algorithm Description 343
1442 Isoefficiency Analysis 345
Parallel Sorting by Regular Sampling 346
14.5.1 Algorithm Description 346
14.5.2 Isoefficiency Analysis 347
Summary 349

Key Terms 349

Bibliographic Notes 350
Exercises 350

cHarTER 18
The Fast Fourler Transform 353

15.1
15.2
15.3

154
15.5

15.6
15.7
15.8
159

Introduction 353
Fourier Analysis 353
The Discrete Fourier Transform 355

15.3.1 Inverse Discrete Fourier
Transform 357

15.3.2 Sample Application: Polynomial
Multiplication 357

The Fast Fourier Transform 360
Parallel Program Design 363

15.5.1 Partitioning and Communication 363
15.5.2 Agglomeration and Mapping 365
15.5.3 Isoefficiency Analysis 365
Summary 367

Key Terms 367

Bibliographic Notes 367

Exercises 367

cHarTer 16
Combinatorial Search 369

16.1

Introduction 369

16.2 Divide and Conquer 370

16.3

16.4
16.5
16.6

16.7

16.8

16.9

16.10
16.11
16.12
16.13

Backtrack Search 371

16.3.1 Example 371

16.3.2 Time and Space Complexity 374
Parallel Backtrack Search 374
Distributed Termination Detection 377
Branch and Bound 380

16.6.1 Example 380

16.6.2 Sequential Algorithm 382

16.6.3 Analysis 385

Parallel Branch and Bound 385

16.7.1 Storing and Sharing Unexamined
Subproblems 386

16.7.2 Efficiency 387

16.7.3 Halting Conditions 387

Searching Game Trees 388

16.8.1 Minimax Algorithm 388

16.8.2 Alpha-Beta Pruning 392

16.8.3 Enhancements to Alpha-Beta
Pruning 395

Parallel Alpha-Beta Search 395

16.9.1 Parallel Aspiration Search 396

16.9.2 Parallel Subtree Evaluation 396

169.3 Distributed Tree Search 397

Summary 399

Key Terms 400

Bibliographic Notes 400

Exercises 401

cuarTer 17

Shared-Memory Programming 404

17.1
17.2
17.3

174

Introduction 404

The Shared-Memory Model 405
Parallel for Loops 407

17.3.1 parallel forPragma 408

17.3.2 Function omp_get_

num_procs 410
17.3.3 Function omp_set_
num_threads 410
Declaring Private Variables 410

17.4.1 private Clause 411

1742 firstprivate Clause 412

17.43 lastprivate Clause 412
Critical Sections 413

17.5.1 critical Pragma 4I5
Reductions 415

Performance Improvements 417

17.7.1 Inverting Loops 417

17.7.2 Conditionally Executing Loops 418
1773 Scheduling Loops 419

More General Data Parallelism 421
17.8.1 parallel Pragma 422

17.8.2

17.5

17.6
17.7

178

Function omp_get__
thread_num 423

Function omp_get__
num_threads 425

17.8.3

17.84
17.8.5
17.8.6
Functional Parallelism 428

179.1 parallel sections Pragma 429
17.9.2 sectionPragma 429

17.9.3 sections Pragma 429

17.10 Summary 430

17.11 Key Terms 432

17.12 Bibliographic Notes 432

17.13 Exercises 433

for Pragma 425
single Pragma 427
nowait Clause 427

17.9

cHarTer 18
Combining MP1 and OpenMP 436

18.1 Introduction 436

18.2 Conjugate Gradient Method 438
18.2.1 MPI Program 438
18.2.2 Functional Profiling 442

18.2.3 Parallelizing Function
matrix_vector_product 442

18.2.4 Benchmarking 443
Jacobi Method 444
18.3.1 Profiling MPI Program 444

183

Contents xi

18.3.2 Parallelizing Function
find_ steady_state 444

18.3.3 Benchmarking 446
Summary 448
Exercises 448

184
185

ApPENDIX A
MPI Functions 450

aprenoix B
Utility Functions 485

B.1 Header File MyMPT .h 485
B.2 Source File MyMPI.c 486

appenpix G
Debugging MPI Programs 505

C.1 Introduction 505
C.2 Typical Bugs in MPI Programs 505
C.2.1 Bugs Resulting in Deadlock 505
C.2.2 Bugs Resulting in Incorrect Results 506

C.2.3 Advantages of Collective
Communications 507

C.3 Practical Debugging Strategies 507

aepenoix D
Review of Complex Numbers 509

appenDix B
OpenMP Functions 513

Bibliography 515

CHAPTER

Motivation and History

Well done is quickly done.
Caesar Augustus

1.1 INTRODUCTION

Are you one of those people for whom “fast” isn’t fast enough? Today’s work-
stations are about a hundred times faster than those made just a decade ago, but
some computational scientists and engineers need even more speed. They make
great simplifications to the problems they are solving and still must wait hours,
days, or even weeks for their programs to finish running.

Faster computers let you tackle larger computations. Suppose you can afford
to wait overnight for your program to produce a result. If your program suddenly
ran 10 times faster, previously out-of-reach computations would now be within
your grasp. You could produce in 15 hours an answer that previously required
nearly a week to generate.

Of course, you could simply wait for CPUs to get faster. In about five years
single CPUs will be 10 times faster than they are today (a consequence of Moore’s
Law). On the other hand, if you can afford to wait five ycars, you must not be in that
much of a hurry! Parallel computing is a proven way to get higher performance
now.

What’s parallel computing?

Parallel computing is the use of a parallel computer to reduce the time needed
to solve a single computational problem. Parallel computing is now considered a
standard way for computational scientists and engineers to solve problems in areas
as diverse as galactic evolution, climate modeling, aircraft design, and molecular
dynamics.

CHAPTER 1 Motivation and History

What’s a parallel computer?

A parallel computer is a multiple-processor computer system supporting
paralle! programming. Two important categories of parallel computers are multi-
computers and centralized multiprocessors.

As its name implies, a multicomputer is a parallel computer constructed
out of muitiple computers and an interconnection network. The processors on
different computers interact by passing messages to each other.

In contrast, a centralized multiprocessor (also called a symmetrical multi-
processor or SMP) is a more highly integrated system in which all CPUs share
access to a single global memory. This shared memory supports communication
and synchronization among processors.

We'll study centralized multiprocessors, multicomputers, and other parallel
computer architectures in Chapter 2.

What’s parallel programming?

Parallel programming is programming in a language that allows you to
explicitly indicate how different portions of the computation may be executed
concurrently by different processors. We’ll discuss various kinds of parallel pro-
gramming languages in more detail near the end of this chapter.

Is parallel programming really necessary?

A lot of research has been invested in the development of compiler technology
that would allow ordinary Fortran 77 or C programs to be translated into codes
that would execute with good efficiency on parallel computers with large numbers
of processors This is a very difficult problem, and while many experimental
parallelizing' compilers have been developed, at the present time commercial
systems are still in their infancy. The alternative is for you to write your own
parallel programs.

Why should I program using MPI and OpenMP?

MPI (Message Passing Interface) is a standard specification for message-
passing libraries. Libraries meeting the standard are available on virtually every
parallel computer system. Free libraries are also available in case you want to
run MPI on a network of workstations or a parallel computer built out of com-
modity components (PCs and switches). If you develop programs using MPI,
you will be able to reuse them when you get access to a newer, faster parallel
computer.

Increasingly, parallel computers are being constructed out of symmetrical
multiprocessors. Within each SMP, the CPUs have a shared address space. While
MPI s a perfectly satisfactory way for processors in different SMPs to communi-
cate with each other, OpenMP is a better way for processors within a single SMP

'parallelize verb: fo make parallel.

