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PREFACE

the MPI (Message Passing Interface) library and the OpenMP applica-

tion programming interface. It is targeted to upper-division undergradu-
ate students, beginning graduate students, and computer professionals leaming
this material on their own. It assumes the reader has a good background in C
programming and has had an introductory class in the analysis of algorithms.

Fortran programmers interested in parallel programming can also benefit
from this text. While the examples in the book are in C, the underlying concepts
of paralle! programming with MPI and OpenMP are essentially the same for both
C and Fortran programmers.

In the past twenty years I have taught paralle! programming to hundreds
of undergraduate and graduate students. In the process I have learned a great
deal about the sorts of problems people encounter when they begin “thinking in
parallel” and writing parallel programs. Students benefit from seeing programs
designed and implemented step by step. My philosophy is to introduce new func-
tionality “just in time.” As much as possible, every new concept appears in the
context of solving a design, implementation, or analysis problem. When you see

the symbol
O—r

in a page margin, you’ll know I'm presenting a key concept.

The first two chapters explain when and why parallel computing began and
gives a high-level overview of parallel architectures. Chapter 3 presents Foster’s
parallel algorithm design methodology and shows how it is used through several
case studies. Chapters 4, 5, 6, 8, and 9 demonstrate how to use the design method-
ology to develop MPI programs that solve a series of progressively more difficult
programming problems. The 27 MPI functions presented in these chapters are a
robust enough subset to implement parallel programs for a wide variety of appli-
cations. These chapters also introduce functions that simplify matrix and vector
1/0. The source code for this 1/0 library appears in Appendix B.

The programs of Chapters 4, 5, 6, and 8 have been benchmarked on acommod-
ity cluster of microprocessors, and these results appear in the text. Because new
generations of microprocessors appear much faster than books can be produced,
readers will observe that the processors are several generations old. The point of
presenting the results is not to amaze the reader with the speed of the computa-
tions. Rather, the purpose of the benchmarking is to demonstrate that knowledge
of the latency and bandwidth of the interconnection network, combined with in-
formation about the performance of a sequential program, are often sufficient to -
allow reasonably accurate predictions of the performance of a parallel program.

T his book is a practical introduction to paraliel programming in C using



Preface

Chapter 7 focuses on four metrics for analyzing and predicting the perfor-
mance of parallel systems: Amdahl’s Law, Gustafson-Barsis’ Law, the Karp-Flatt
metric, and the isoefficiency metric.

Chapters 10-16 provide additional examples of how to analyze a problem
and design a good parallel algorithm to solve it. At this point the development of
MPI programs implementing the parallel algorithms is left to the reader. I present
Monte Carlo methods and the challenges associated with parallel random number
generation. Later chapters present a variety of key algorithms: matrix multipli-
cation, Gaussian elimination, the conjugate gradient method, finite difference
methods, sorting, the fast Fourier transform, backtrack search, branch-and-bound
search, and alpha-beta search.

Chapters 17 and 18 are an introduction to the new shared-memory program-
ming standard OpenMP. I present the features of OpenMP as needed to convert
sequential code segments into paralle] ones. I use two case studies to demonstrate
the process of transforming MPI programs into hybrid MPI/OpenMP programs
that can exhibit higher performance on multiprocessor clusters than programs
based solely on MPI.

This book has more than enough material for a one-semester course in par-
allel programming. While parallel programming is more demanding than typical
programming, it is also more rewarding. Even with a teacher’s instruction and
support, most students are unnerved at the prospect of harnessing multiple pro-
cessors to perform a single task. However, this fear is transformed into a feeling
of genuine accomplishment when they see their debugged programs run much
faster than “ordinary” C programs. For this reason, programming assignments
should play a central role in the course.

Fortunately, parallel computers are more accessible than ever. If acommercial
parallel computer is not available, it is a straightforward task to build a small
cluster out of a few PCs, networking equipment, and free software.

Figure P.1 illustrates the precedence relations among the chapters. A solid
arrow from A to B indicates chapter B depends heavily upon material presented
in chapter A. A dashed arrow from A to B indicates a weak dependence. If
you cover the chapters in numerical order, you will satisfy all of these prece-
dences. However, if you would like your students to start programming in C with
MPI as quickly as possible, you may wish to skip Chapter 2 or only cover one
or two sections of it. If you wish to focus on numerical algorithms, you may
wish to skip Chapter 5 and introduce students to the function MPI_Bcast in
another way. If you would like to start by having your students programming
Monte Carlo algorithms, you can jump to Chapter 10 immediately after Chapter
4. If you want to cover OpenMP before MPL, you can jump to Chapter 17 after
Chapter 3.

I thank everyone at McGraw-Hill who helped me create this book, espe-
cially Betsy Jones, Michelle Flomenhoft, and Kay Brimeyer. Thank you for your
sponsorship, encouragement, and assistance. I also appreciate the help provided
by Maggie Murphy and the rest of the compositors at Interactive Composition
Corporation.

xill
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Figure P.1 Dependences among the chapters. A solid arrow
indicates a strong dependence; a dashed arrow indicates a weak
dependence.

I am indebted to the reviewers who carefully read the manuscript, correcting
errors, pointing out weak spots, and suggesting additional topics. My thanks
to: A. P. W. Bohm, Colorado State University; Thomas Cormen, Dartmouth
College; Narsingh Deo, University of Central Florida; Philip J. Hatcher,
University of New Hampshire; Nickolas S. Jovanovic, University of Arkansas
at Little Rock; Dinesh Mehta, Colorado School of Mines; Zina Ben Miled,
Indiana University-Purdue University, Indianapolis; Paul E. Plassman,
Pennsylvania State University; Quinn O. Snell, Brigham Young University;
Ashok Srinivasan, Florida State University; Xian-He Sun, Illinois Institute of
Technology; Virgil Wallentine, Kansas State University; Bob Weems, Univer-
sity of Texas at Arlington; Kay Zemoudel, California State University-San
Bernardino; and Jun Zhang, University of Kentucky.

Many people at Oregon State University also lent me a hand. Rubin Landau
and Henri Jansen helped me understand Monte Carlo algorithms and the detailed
balance condition, respectively. Students Charles Sauerbier and Bernd Michael
Kelm suggested questions that made their way into the text. Tim Budd showed
me how to incorporate PostScript figures into LaTeX documents. Jalal Haddad
provided technical support. Thank you for your help!

Finally, I am grateful to my wife, Victoria, for encouraging me to get back
into textbook writing. Thanks for the inspiring Christmas present: Chicken Soup
forthe Writer's Soul: Stories to Open the Heart and Rekindle the Spirit of Writers.

Michael J. Quinn
Corvallis, Oregon
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CHAPTER

Motivation and History

Well done is quickly done.
Caesar Augustus

1.1 INTRODUCTION

Are you one of those people for whom “fast” isn’t fast enough? Today’s work-
stations are about a hundred times faster than those made just a decade ago, but
some computational scientists and engineers need even more speed. They make
great simplifications to the problems they are solving and still must wait hours,
days, or even weeks for their programs to finish running.

Faster computers let you tackle larger computations. Suppose you can afford
to wait overnight for your program to produce a result. If your program suddenly
ran 10 times faster, previously out-of-reach computations would now be within
your grasp. You could produce in 15 hours an answer that previously required
nearly a week to generate.

Of course, you could simply wait for CPUs to get faster. In about five years
single CPUs will be 10 times faster than they are today (a consequence of Moore’s
Law). On the other hand, if you can afford to wait five ycars, you must not be in that
much of a hurry! Parallel computing is a proven way to get higher performance
now.

What’s parallel computing?

Parallel computing is the use of a parallel computer to reduce the time needed
to solve a single computational problem. Parallel computing is now considered a
standard way for computational scientists and engineers to solve problems in areas
as diverse as galactic evolution, climate modeling, aircraft design, and molecular
dynamics.




CHAPTER 1 Motivation and History

What’s a parallel computer?

A parallel computer is a multiple-processor computer system supporting
paralle! programming. Two important categories of parallel computers are multi-
computers and centralized multiprocessors.

As its name implies, a multicomputer is a parallel computer constructed
out of muitiple computers and an interconnection network. The processors on
different computers interact by passing messages to each other.

In contrast, a centralized multiprocessor (also called a symmetrical multi-
processor or SMP) is a more highly integrated system in which all CPUs share
access to a single global memory. This shared memory supports communication
and synchronization among processors.

We'll study centralized multiprocessors, multicomputers, and other parallel
computer architectures in Chapter 2.

What’s parallel programming?

Parallel programming is programming in a language that allows you to
explicitly indicate how different portions of the computation may be executed
concurrently by different processors. We’ll discuss various kinds of parallel pro-
gramming languages in more detail near the end of this chapter.

Is parallel programming really necessary?

A lot of research has been invested in the development of compiler technology
that would allow ordinary Fortran 77 or C programs to be translated into codes
that would execute with good efficiency on parallel computers with large numbers
of processors This is a very difficult problem, and while many experimental
parallelizing' compilers have been developed, at the present time commercial
systems are still in their infancy. The alternative is for you to write your own
parallel programs.

Why should I program using MPI and OpenMP?

MPI (Message Passing Interface) is a standard specification for message-
passing libraries. Libraries meeting the standard are available on virtually every
parallel computer system. Free libraries are also available in case you want to
run MPI on a network of workstations or a parallel computer built out of com-
modity components (PCs and switches). If you develop programs using MPI,
you will be able to reuse them when you get access to a newer, faster parallel
computer.

Increasingly, parallel computers are being constructed out of symmetrical
multiprocessors. Within each SMP, the CPUs have a shared address space. While
MPI s a perfectly satisfactory way for processors in different SMPs to communi-
cate with each other, OpenMP is a better way for processors within a single SMP

'parallelize verb: fo make parallel.



