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CHAPTER 1
Introduction

1.1 Statics of Structures Defined

By definition®, a structure ( especially, an engineering structure) is anything built by man.
This covers buildings, bridges power-line supports, storage tanks, railway carriages and wagons,
trucks, airplanes, and a multitude of other things. In the narrower sense, a structure is the load-
bearing part of a building, bridge, etc.

In this text, we shall treat as a structure any system of interconnected rigid bodies
( members) .

The requirements that a structure must satisfy may be summed up as follows. Above all, it
must be immovable with respect to the ground (or its equivalent) and retain its original geometry
throughout its service life. Also, it must be sufficiently strong, stiff, and stable so as to offer
adequate resistance to the imposed loads and to keep deformations within safe limits. Finally, it
must be economical of materials and inexpensive to erect.

To meet the above requirements the structural engineer must be able to propose a suitable
structure, to examine its overall stability and finally, to calculate structural forces and
deformations, no matter what materials ( elastic or nonelastic) , loads (static or dynamic), and
calculation techniques are involved or used. This procedure comes under the heading of structural
engineering. It widely draws on the techniques and mathematics of strength of materials and the
theory of elasticity and plasticity.

The subject dealing with the calculation of reactions ( that is forces and moments) and
deformations ( that is translations and rotations) in structures due to applied loads is known as
structural analysis.

The branch of structural analysis concemed with the methods of analyzing structures for
strength, stiffness, and stability under loads applied statically is termed statics of structures. This
will be the subject-matter of the present book.

Statics of structures is closely associated with engineering mechanics and, as already noted,

& See A dictionary of Civil Engineering by John S. Scott. — Translator’s note.



2 G %

strength of materials. Strength of materials is, in turn, based on knowledge supplied by
engineering mechanics and is concerned with the analysis of structural members for strength ,
stiffness, and stability. Statics of structures applies the techniques carried over from strength of
materials and engineering mechanics to the statical analysis of structures, and serves as the
foundation for related subjects in civil engineering.

To sum up, the structural analyst’s contribution consists in the choice of optimal structural
configurations, preliminary analysis of likely alternatives and final analysis for internal forces,
elastic deformations caused by external factors, and for overall stability.

Statics of structures is not concerned with stress-strain relations as such. Nor is it supposed to
assign sections to members; both are assumed to be found from strength of materials in the course
of design.

It should be clear that statics of structures is an applied science and is primarily a tool for
good design rather than an end in itself. This above all implies orientation towards advanced

techniques in both analysis and design, and towards economy in both materials.
1.2 Basic Simplifying Assumptions

The basic simplifying assumptions employed in structural analysis cover the structure as a
whole. They are as follows:

1. Within certain loading limits, the material of a structure is assumed to be ideally elastic.
In other words, once a load has been removed, it leaves behind no deformation.

2. The displacements of various points of a structure, caused by elastic deformation, are
assumed to be rather small compared with the size of the structure itself.

This implies that any change in the distribution of forces due to deformation may be ignored
when setting up equilibrium equations (that is in finding constraint reactions and or internal
forces). The analytical theory based on the premise of small structural deformations is called small
deformations theory.

3. Within certain loading limits, the displacements of various points of an elastic structure
are assumed to be directly proportional to the forces that cause these displacements. Such
structures are referred to as linearly elastic.

4. Linearly elastic structures obey the principle of superposition which is an outcome of
Hooke’s law. This principle states that:

The forces and the deformations, in a linearly elastic structure, caused by the joint action of
loads, are the algebraic sum of the effects of the same loads produced individually, irrespective of

the sequence of their application.

1.3 The Structural Model

Real structures are usually much too complex for rational analysis; often, they have to be
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reduced to simplified models prior to quantitative treatment. This modeling is one of the most
important jobs of the analyét and requires experience and judgement so that the resulting model
strikes a happy compromise between reality and simplicity. In this book, the numerous
“structures” discussed and shown are really only models of the real things.

Basically, a model of a structure is a

simplified picture of the main factors C] D,
governing its behavior under load. The Main >
. . (a) trusses
correct choice of a model is a complex and T
op _ T4 I B
critical task, and depends on the accuracy of chord 4 >IN ST i '
c AN

analysis required.

As an illustration, consider a single- . X Bottom
chord

span railway bridge (Fig. 1.1(a)) which Al

generally consists of two vertical plane trusses
joined together by lateral braces and a deck.
The deck is assembled from floor beams with
their ends fixed to the trusses, and stringers

which are connected to and rest on the floor

beams. The truss members are rigidly welded
or riveted to one another at the ends. The
bridge carries a vertical load due to the self-
weight of the train, and a horizontal wind
load.

(1) two vertical trusses ACC, A, and

BDD, B, whose structural models are shown in
Fig. 1.1(b);
(2) a horizontal truss CC, D, D lying

between the top chords of the main vertical

trusses and resisting wind loads( its structural

model is shown in Fig. 1.1(¢)); Fig. 1.1
(3) two lateral supporting frames ACDB

and A,C,D, B, whose structural models are shown in Fig. 1.1(d).

1.4 Classification of Structures

Structures may be classified in various ways: '

(1) According as their components lie in a plane or in space, structures may be categorized
as:

(a) Plane structures. These lie in one plane which also contains their loads (Fig. 1.2).

Only plane structures are discussed in this Chapter.
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(b) Space structures. These lie in space, and
loads may act on them along any direction (Fig. 1.3
(a) and (b)). Such structures have only been
mentioned to make the discussion complete.

(2) According to the type of their members,
structures may further be classed into;

(a) Framed structures . These consists of one-

dimensional members, that is, those for which one

dimension is much larger than the other two. Framed
Fig.1.2 structures include beams, trusses, frames, and

arches (Fig. 1.4(a), (b), (¢), and (d)).
(b ) Thin-walled ( two-dimensional )

structures . The thickness of such structures is
much smaller than the other two dimensions.
There are also commonly referred to as plate
structures, if their members are plates ( Fig.
1.5(a)), or shell structures, if their members
are shells (Fig. 1.5(b)).

( ¢ ) Massive structures. For similar

reasons, these are also termed three-

dimensional structures. They include retaining

Fig.1.3

walls (Fig. 1.6) , masonry vaults (Fig. 1.7),
dams, and footings analyzed and designed per
metre run.

(3) According to the direction of their support reactions, structures may be classed into:

(a) Thrust-free structures . When subjected to a vertical load, these develop only vertical
supports reactions (Fig. 1.8(a), (b), and (¢)).

(b) Thrust-developing structures . These develop inclined support reactions which may be
resolved into vertical and horizontal components. The latter component is called the thrust.
Thrust-developing structure includes arches, vaults, frames (Fig. 1.9 (a) and (b)), and
arched and cable-stayed trusses (Fig. 1.9(c) and (d)).

(4) According to the manner in which they can be analyzed, structures are divided into:(a)
statically determinate structures which can completely be analyzed by statics alone; (b) statically
indeterminate structures which cannot be analyzed by statics alone. For their solution, redundant
structures (as statically indeterminate structures are also frequently called) require that the three
equations of statics ( the equilibrium equations) be supplemented by compatibility equations which

take care of their geometry.
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(a)
() VAN

Fig.1.6 Fig. 1.7

B
P

Va VaT
Fig. 1.8 Fig. 1.9

1.5 Supports for Plane Structures

All structures have to be supported suitably. The following three types of support are in
common use:

1. A roller support (also called a movable hinged support) (Fig. 1.10(a)).

2. A hinged support (also called an immovable hinged support) (Fig. 1.11(a)).
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3. A fixed support (Fig. 1.12(a)).

The above supports are symbolized as shown in Figs. 1.11(b)and(c), 1.12(b) and (c),
and Figs. 1.12(b)and. (c), respectively.

A roller support offers no resistance either to the rotation of the supported body about an axis
perpendicular to its plane through C, or to its displacement along the support base. Friction at the
support is customarily ignored, so the only reaction R possible at a roller support is along the
perpendicular to its base through C (see Fig. 1.10(a)).

A hinged support permits free rotation of the

(a)

[

body about an axis perpendicular to its plane through

C, but does not permit its displacement either along
or perpendicular to the base. The reaction R
developed at such a support may be in any direction

(see Fig. 1.11(a)). As a rule, it is resolved into

two components, namely a component H along and a

component V perpendicular to the base.

Fig.1.10

A fixed support allows the supported body neither

in-plane rotation nor translation in any direction. The

Fig. 1. 11 Fig.1.12

three possible support reactions—one moment and two reactive forces—are indicated in Fig. 1. 12

(a).
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CHAPTER 2
Stability

2.1 Stable and Unstable Structures

As already mentioned in Chapter 1, any structure must retain its original geometry throughout
its service life. This requirement is met by what are called stable structures.

To gain insight into this matter, consider a structure made up of three bars hinged to one
another at the ends to form a triangle ABC (Fig.2.1(2)). The geometry of such a triangle will
obviously remain unchanged, whatever position it may occupy in space, because three bars of
constant length can form only one triangle. If we load the triangle by a force as shown in Fig. 2.
1(b), it will nevertheless change its shape, although very insignificantly (see triangle AB,C,),

—a fact which can be attributed to the elastic deformation of its members alone.

TCc G

PR

Thus, a structure may be called stable if its shape remains unchanged, whatever, the
position is in space.

A characteristic feature of a stable structure loaded within reasonable limits is the ability to

(a)

—_—
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change its shape only insignificantly as a result of elastic deformation of its members. By elastic
deformation is meant a change in the size of the constituent members as shown in Fig. 2.1(b), or
a change in both the size and shape of the members as shown in Fig. 2.1(c¢).

A stable structure is amenable to small deformations theory and, as a consequence, to the
principle of superposition.

The simplest stable structure is a triangle ( sometimes called a basic triangle).

A structure whose shape changes suddenly when its position in space is altered or when it is
subjected to a load, however small, is unstable.

A characteristic feature of an unstable structure is that any change in its shape is associated
with finite displacements of its members without deformation.

As an example, consider the pin-jointed rectangle ABCD shown in Fig. 2.2 (a). It is
unstable, because even an infinitesimal load will force its members AB, BC, CD, and DA to
change their position without any change in length or shape. At first, the loaded rectangle
becomes the shape of a parallelogram AB’C’D. Then, its sides collapse, as it were, on one
another to form an almost straight line AC"composed of segments AB”, B"C”,C"D, and DA.

If we add a diagonal bar AC (Fig. 2.2(b)) or BD (shown by the dashed line) to the
original rectangle, the structure thus derived will be stable.

In practice, use is predominantly made of stable structures fixed to the ground (or its
equivalent) so that they will not move, or internally unstable structures attached to the ground so

as to form a stable system.

2.2 Arrangement of Truss Members

A detailed discussion of the assembly of trusses has been delayed until this chapter so that
the reader will have had some contact with the elementary types. The background should enable
him or her to understand the material to follow more easily.

The triangle has been shown to be the basic shape from which trusses are developed because
it is the only stable shape. Other shapes such as the ones shown in Figs. 2.3(a) and (b) are
obviously unstable and may possibly collapse underload. Structures such as these can, however,
be made stable by one of the following methods.

1. Addition of members so that the shapes are made to consist of triangles. The structures of
Fig. 2.3(a) and (b) are stabilized in this manner in (c) and (d), respectively.

2. Using a member to tie the unstable structure to a stable support. Member AB performs this
function in Fig. 2.3(e).

3. Making some or all of the joints of an unstable structure rigid, so they become moment
resisting. A figure with moment-resisting joints, however, does not coincide with the definition of

a truss (that is,members connected with frictionless pins, and so on).
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@ (b) © @) (©)

Fig.2.3

2.3 Statical Determinacy of Trusses

The simplest form of truss, a single triangle, is illustrated in Fig. 2.4(a). To determine the
unknown forces and reaction components for this truss, it is possible to isolate the joints and write
two equations, 2 H = 0 and Z V = 0, for each. From experience obtained before there
should be little difficulty in making the necessary calculations.

The single-triangle truss may be expanded into a two-triangle one by the addition of two new
members and one new joint. In Fig.2.4(b), triangle ABD is added by installing new members

AD and BD and the new joint D. A further expansion with a third triangle is made in part (c)of

D D
B B
VAVEENVAVEE
(a) (b)

Fig.2.4

the figure by the addition of members BE and DE and joint E. For each of the new joints, D and
E, a new pair of equations is available for calculating the two new-member forces. As long as this
procedure of expanding the truss is followed, the truss will be statically determinate internally.
Should new members be installed without adding new joints, such as member CE in Fig. 2.4
(d), the truss will become statically indeterminate because no new joint equations are made
available to find the new member forces.

From the information above an expression can be written for the relationship that must exist
between the number of joints and the number of members and reaction components for a particular
truss if it is to be statically determinate internally. In the following discussion, m is the number of
member, j is the number of joints, and r is the number of reaction components.

If the number of equation available (2;) is sufficient to obtain the unknowns, the structure is
statically determinate, from which the following relation may be written:

2j=m+r1

Or as more commonly written,
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m=2j-r

Before an attempt is made to apply this equation, it is necessary to have a structure that is
stable externally or the results are meaningless; therefore r is the least number of reaction
components required for external stability. Should the structure have more external reaction
components than necessary for stability ( and thus be statically indeterminate externally), the
value of r remains the least number of reaction components required to make it stable externally.
This statement means that r will equal three for the usual statics equations plus the number of any
additional condition equations that may be available.

It is possible to build trusses that have too many members to be analyzed by statics, in which
case they are statically indeterminate internally, and m will exceed 2j — r because there are more
members present than are absolutely necessary for stability. The extra members are said to be
redundant members. If m is three greater that 2j — r, there are three redundant members, and the
truss is internally statically indeterminate to the third degree. Should m be less that 2j ~r, there
are not enough members present for stability.

A brief glance at a truss will usually show if it is statically indeterminate. Trusses having
members that cross over each other or members that serve as the sides for more two triangles may
quite possibly be indeterminate. The 2j — r expression should be used, however, if there is any
doubt about the determinacy of a truss, because it is not difficult to be mistaken. Figure 2.5
shows several trusses and the application of the expression to each. The small circles on the
trusses indicate the joints.

Little explanation is necessary for most of the structures shown, but some remarks may be
helpful for a few. The truss of Fig. 2. 5(e) has five reaction components and is statically
indeterminate externally to the second degree; however, two of the reaction components could be
removed and leave a structure with sufficient reactions for stability. The least number of reaction
components for stability is 3, m is 21, and j is 12; applying the equation m = 2j - r yields;

21 =24 -3 =21 statically determinate internally

The truss of Fig. 2. 5 (j) is externally indeterminate because there are five reaction
components and only four equations available. With r equal to 4 the structure is shown to be
statically determinate internally. The three-hinged arch of Fig. 2.5 (k) has four reaction
components, which is the least number of reaction components required for stability; so 7 equals
4. Application of the equation shows the arch to be statically determinate internally.

In the chapter pertaining to the analysis of statically indeterminate structures it will be seen
that the values of the redundants may be obtained by applying certain simultaneous equations. The
number of simultaneous equations equals the total number of redundants, whether internal,
external, or both. It therefore may seem a little foolish to distinguish between internal and external
determinacy. The separation is particularly questionable for some types of internally and externally
redundant trusses where no solution of the reactions is possible independently of the member
forces, and vice versa.

If a truss is externally determinate and internally indeterminate, the reactions may be
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obtained by statics. If the truss is externally indeterminate and internally determinate, the
reactions are dependent on the internal member forces and may not be determined by a method
independent of those forces. If the truss is externally and internally indeterminate, the solution of
the forces and reactions will be performed simultaneously. ( For any of these situations, it may be
possible to obtain a few forces here and there by joints without going through the indeterminate

procedure necessary for complete analysis. ) This entire subject is discussed in detail in later

chapters.
m=21 m=6
j=12 Jj=4
r=3 r=3
M&:teminate Redundant
CY) (b)
m=8 m= -9
J=5 Jj=-6
=3 = 3 .
Redundant Determinate
© @
m=21 m=
Jj=12 Jj=5
r=3 r=3
Determinate Determinate
internally internally
(©) ®
=19

j=10

=3

2 Redundant

(® (h)

m=10

=17

=4
Determinate
G) internally

=12
8
r=3
nstable

U
®

mT§2

j=

r=4
Determinate

(k)

Fig.2.5
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CHAPTER 3
Bending of Beams

3.1 Introduction

A beam is a structural element which is subjected to transverse loads causing flexure or
bending. Additionally, a beam may be required to carry axial force (thrust) and twisting moment
(torque). In general, bending moment is accompanied by shear force and the two are related as
will be seen later. To understand the behaviour of a beam it is necessary to be able to specify the
bending moment and shear force distributions in the member. This is done through the drawing of
bending moment and shear force diagrams which show the values of these quantities at all sections
of the beam. In cases where thrust and torque are also present, distributions of these quantities
can also be represented diagrammatically.

The strength of a beam will be compared with the magnitudes of the various force actions to
which it is subjected and its adequacy assessed. In carrying out this assessment actual (working)
values of the stresses will be compared with the maximum allowable values. In addition to the
various assessments of strength, it is usually necessary to investigate the stiffness of the beam and
compare actual displacements with those which would be considered limiting values. The term
‘ displacement’ is used in a general sense to include transverse displacements ( deflections) and
slopes.

In this chapter we consider all these topics, starting with bending moment, shearing force
and thrust diagrams and going on to develop the theory of bending which will enable us to

calculate stresses and displacements in beams.

3.2 Bending Moment, Shearing Force and Thrust Diagrams

The Bending Moment at a section in a beam is the algebraic sum of the moments of the forces
to one side of the section taken about the centroid of the section.

The Shear Force at a section is the algebraic sum of the forces to one side of the section taken
perpendicular to the section.

These definitions will be illustrated with reference to the beams shown in Fig. 3.1(a) and

(e) in the horizontal beam, Fig. 3.1(a), the section X distant a from the left-hand support is



