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The Role, Development, and Prediction of
Microstructure in Polymer Processing

Musa R. Kamal
(Department of Chemical Engineering, McGill University, Montreal, Canada H3A 2B2
Musa. kamal@mcgill. ca)

Polymer processing research provides the basis for developing a unified approach to deal-
ing with polymer handling and transformation processes. It combines the principles of poly-
mer science with the fundamentals of engineering and science to obtain useful polymeric

products from optimized resins and manufacturing processes.

A typical polymer processing sequence starts with a solid (and sometimes liquid) resin in
granular or powder form (random configuration), and ends with the transformation of the
resin into a solid product with specified shape, dimensions, and short/long term properties
under field conditions. The sequence of operations experienced by the material during this
transformation involves solids transport, heating, melting, melt flow, shaping in a die or
mold, and finally solidification, by cooling in the case of thermoplastics, or curing by heating
in the case of thermosets. Thus, a variety of interactive and complex phenomena are in-
volved, such as heat transfer, fluid flow, melting, solidification, chemical reactions, etc.
These phenomena produce the thermo-mechanical history (temperature, velocity, deforma-

tion, and stress fields), that the polymer experiences during processing.

The thermo-mechanical history experienced by the polymer impafts to it a microstruc-
ture (crystallinity, morphology, orientation, residual stresses, etc. ). This microstruc-
ture ultimately determines the properties of the final product (mechanical, optical, barrier,
etc. ). The field of polymer processing attempts to study and manipulate the interactions
among the various components of the system: the resin, process, microstructure, and
product properties. Computer simulation has been the tool of choice to achieve this objec-

tive.

Polymers exhibit complex rheological behavior, in both the molten and solid states.
Furthermore, their thermal and thermodynamic properties are not readily available. There-
fore, computer simulation requires extensive effort in the selection and determination of resin
properties and constitutive models. Furthermore, in order to predict properties or micro-

structure, it is necessary to employ multi-scale models.



In spite of the above complexities, substantial progress has been made in the application
of computer simulation to polymer processing. The presentation will review some of the re-
cent developments in the field, with examples of research on microstructure development,

characterization, and prediction in the areas of injection molding and film blowing.



Time-space Coupled Two-scale Method for the Heat
Transfer Problem in Composite Material
Structure With Periodicity

Youai Li, Junzhi Cui

Abstract; In this paper, a time-space coupled two-scale method is presented for the heat
transfer problem of the structure of composite materials with periodic configurations,
whose material coefficients generally depend on time . At first, the main idea of time-
space coupled two-scale method is briefly stated The time-space coupled two-scale asymp-
totic expansion for the solution is given And then the error estimation for the approximate
solution with two-order terms is shown. Finally, the numerical example demonstrates the
effectiveness of this method.

Keywords: Composite material with periodic configuration, Heat transfer problem,

Time-Space Coupled Two-Scale Analysis, Homogenization

1 Introduction

In the last decade there is a rapidly growing interest in the multi-scale analysis of materi-
al sciences and engineering computations, it is because many of investigated problems involve
multi-physics and multi-scale phenomena, and it is needed to capture both the macro-behav-
ior and micro-behavior of them in practice. Several effective multi-scale methods can be found
in literature, including the asymptotic expansion method with periodic boundary conditions
of Lions and at allll, the oscillating test functions method proposed by Tartarl12:13] | the as-
ymptotic expansion method with Dirichlet boundary conditions due to Cui and Caol3~51, the
multi-scale finite element method from Hou and at all”?, and the Heterogeneous multi-scale
method (HMM hereafter) by E and Engquist(¢]. In particular, it can be concluded that the
macro-behavior is accurately simulated by using these methods at least for some special prob-
lems, for instance, problems with scale separation. Up to now, most of studies on the multi
scale analysis (hereinafter MSA) methods for the composite materials and their structures
are concentrated on steady problems. A few of papersi!'*]are concerned with the time de-
pendent problems of composite materials with periodic configurations. By regarding the time
t as a parameter, Caol?)and Ming and Zhangl'®) considered a class of the time dependent
problems based on the two-scale homogenization method.

Date: September 18, 2006,
2000 Mathematics Subject Classi fication. 65N10, 65N15, 35J25.



In the present paper, we study the heat conduction problem for the structure of composite ma-
terials, whose material coefficients have e-small periodicity with respect to space coordinates x €
Rrand generally depend on time ¢. In order to effectively capture the microscopic variation of the
structural behaviors with respect to space and time at the same time, we modify the conventional
two-scale asymptotic analysis only in space to propose a time-space coupled two-scale analysis meth-
od for the heat conduction problem of composite material structure. We will discuss the well-pos-
edness of the new method, and analyze its error. The numerical experiments show that our time-
space coupled two-scale analysis method is valid.

The rest of this paper is organized as follows. The basic idea of the time-space coupled two-
scale analysis method for the parabolic problem of the structure of composite materials with small
periodicity is briefly introduced in section 2. In the third section, we show the time-space coupled
two scale expansions. The error of finite terms approximate solution in the section 4 is given. Nu-
merical result is given in section 5. The conclusions are given in the last section.

Denote uniformly by C the positive constant without distinction. For the sake of convenience,
we use the Einstein summation convention on repeated indices. Throughout this paper, Q denotes

the n~dimension unit cube,

2 Basic Idea of the Time-space Coupled Two-scale Analysis Method

In this paper, we consider the following heat conduction problem of the structure of composite

materials with small periodicity.

. dut(x,t) 3 ¢, Jut (x,t)
(4 (l’yt)fe (x,t) _at_“ a.l',’ (ku (Iyt) an )
=flz,0),(z,EQX0,D, Q@D

u () =gy (z,8) , (2,8} € QX (0, T)
w (z,0)=gi(x),x€N
where Q€ R* with n dimension space, o (x, 1) is the density function, ¢t (x, #) is the heat ca-
pacity function, and k;(z, £) (i, j=1, 2, +-=, n) are the heat conduction coefficients, f(x, ),
8 (x, 1) and g:(x) are given functions. From composite material sciences, it is well known that
for the composite materials with small periodicity &£z O, ¢ (x5 O and ky (z, O (i, j=1, 2,
***» n) have e-small periodicity with respect to space coordinates x, where ¢ is the size of basic cells
of the composite materials. It means that
o (x,) =g (xtee; 1),
c(x,)=c(ztee; 1) .2

k; (z,0) =k (xtee; s8) (i, j=1,2,+,n)
So they can be defined on a basic cell, hereafter each cell of investigated composite materials is
denoted by eQ. Generally speaking, &z, B, ¢ (x, t) and ki (xy ) (G, j=1, 2, *+, n) de-
pend on time #, but have not periodicity with respect to z. Let

- L
= 2.3



& () p( ,t),c(z,t)—c(e ) E (z,0)= k( ,t),xé.() 2.0

And the boundary condition gs(x, t) and initial condition g;(x) are given such that
g, (x,0)=g;(x),x€MN
For convenience, we make the following assumptions:

(AD p(& v, c(& ) and k; (&, t) are 1-periodic functions with respect to &
(A2) {kij (£ ; t) }is a symmetric matrix and satisfies the following uniformly elliptic condi-
3

tion;

Ayl 2<ky (Fot)p < In 25 1B =G+, Y gERT,
'% ,t)‘<;_t,V(x,t)€.(2X(O,T) (2.5)

(AD) p(Fst) (Lot and &, (1) € L= @X[0,TD)
(A4) there exist pos pms ¢, and c,, such that
0o <p( T 1) Som 10, <o T 12) <, ¥ (21D €AX (0, T)

From the theory of parabolic problemst8-9:14], under these conditions it follows that there ex-
ists a unique solution to the problem (2. 1).

It is well known that in numerical integration methods of parabolic problems with homogenious
coefficients, the time interval [0, T is always partitioned into many subintervals [tp , tpﬂ:l (p
=0, 1, -+, P—1), and the structure  into mesh domain (" composed of finite nodes with the
space size h in FE method or FD method. Then the heat transfer behavior on global QX (0, T) is
characterized by finite nodal values on Q" at P discretized time nodes. For the stability and conver-
gence of the discretized equations, the time step ¢,+1 —t, and the space mesh size & should be de-
signed in such a way that the usual CFL condition be satisfied. Since compared with the size L of
the structure (), the size ¢ of the basic cell is very small for the structure of composite materials,
then inside each cell eQ the heat transfer behaves in shorter period. Thus, in order to capture the
heat transfer behaviors inside each QX (0, T), a very fine partition should be used for both space
and time. This in turn leads to very large scale computation.

In what follows, the two-scale analysis method for steady problem will be extended to de-
velop a time-space coupled Two-Scale analysis Method (TSM) for solving the problem (2.1).
The basic idea is as follows: from conventional numerical integration methods of parabolic prob-
lem, the time interval [0, T is still divided into many subintervals I:tp , tpH:I (p=-0,
1, »+» P—1), and each basic cell eQ is taken as the smallest unit for the space homogeniza-
tion, and then based on time-space homogenization on eéQX [, t,+1] the macroscopic homog-
enization problem is constructed, and at the same time the microscopic cell problems are defined
on eQX[tp, tp+1]. Actually the latters are always transformed to 1-normalized problems de-
fined on a time-space normalized domain QX [0, 1]. It means that the homogenization solution
is evaluated on 21X (0, T) based on the space meshes with the size ko and time nodes ¢, (p=

5



0, 1, «-, P), and the microscopic cell solutions are obtained by numerically solving the time-
space 1-normalized problems defined on QX [0, 1],

Generally speaking, the size ho of space meshes is greater than e and At=t,+; — t, is
greater than ¢?. Taking into account the usual CFL condition for the FD method of parabolic
equations, we will choose Az=JAe? as the pace of the time integration in our time-space coupled
two-scale asymptotic analysis below, where A is a parameter introduced by

Ae?=T/P
In another words, we partition the interval [0, T] into P=[T/(e?)] subintervals by introdu-
cing nodes #,5 #» ***» t,. Without losing generality, we suppose that t,=0and ¢,=T.

Note that A can be chosen according to homogenization parameter values 3(2;,) , ©(tp)

”~
and k4 (¢p) (i, j=1, 2, =+, n), and the stability and accuracy of the discrete system.

3 Time-Space Coupled Two-Scale Expansions

This section briefly shows the time-space coupled two-scale analysis expansions of the

temperature field for the problem (2. 1).
Since the density function p(ei,t)and the heat capacity function c(eﬁ,t)vary slowly in

phase, it is supposed that in a time subinterval [¢,, t,,1] the coefficients p(&, t), c(g, 1)
are constants. They can be chosen as follows
p(&,t)=p, (&) 3.1
c(§&)=c, (& 3.2

Assume the heat conduction coefficients k,; (ei’ t) (i, j=1, 2, -, n) as follows

dk;;
kg(e,t):kij(sytp)_*_’_dzi t=tp<t"—tp)
dk;
+ dz (t_tp)z"'—R? (Evl) (3~ 3)
t =t, 7
let
wh (O =k; (&2,
dk;
p(py— ARij
X © de t=t, ’
d2k;
rs. ® ZTZJ -, s
then
kf (&:1) =wh (&) +s?, O G=t,)+rE (O (—1,)*+RE (6,0 (3.4

where P, (8)>» ¢,(8), wh (&) and (&), £ (&), RZ (&, t) are all smooth functions of &,
and defined on n-dimension unit cube.
Without lose of generality, we assume that
ky; (60 =} (&) +55 (O (t—1,) +72 (&) (1—1,)? (3.5)
for all t€ (2, tp41), t—1t,=Ae?r(z€ (0, 1)).
6



In view of assumption (3.5), k;(& ), on [t,, ty+1], can be written as
kL (8,0 =wh (&) +Ash (Ol r+A%r (D¢t
Now we introduce the time-space coupled two-scale asymptotic expansion for the tem-
perature field of the problem (2.1).
From formal calculation we conclude following theorems:
Theorem 3. 1The solution u*(z, #) of the problem (2.1) can be expressed in 2X[t,, t,4,]
as

wlz, ) =uy (z, ) + 3¢ NI (& O Dy (2 0 (3.6)

=1 (e =1
wherea:(aly'“,al),(a): lall +"‘+[a[ ‘9 a,-‘—‘-l, 2, vy my ]=19 2y ey Iy Dide-

notes the usual derivative operator, and u(; (z, t) defined on 2X[t,, t,41] is a differentia-

ble function with respect to variable (x, ), and Nf g (& 1) defined on QX [0, 1] are
1 i

the functions of variables é= (&, -+, &) and r, they are determined as follows:

(1) For l=1, Nf (&, ©) (a;=1, 2, -+, m) are the solution of following problems

IN? (&)

_ . IN? (&,
A 1p, (E)cp(é)—T——a—&;<w§ (e)__l__)

I¢;
a'w{; ®
:T’ &,neqQxlo,1]

Nfl (&,7) is 1-periodic in &, JQ Nf (&,Dde=0 : 3.7
N? (5,0)={ . d _
! Nfl &1, if p=1,6€Q

(2) From N? (&, 1), the homogenization coeffcients ifa (ays az=1, 2+, n) are e-

1 172

valuated in following formula

~p — 1 aNfl (531‘)
kmuz J‘O [J‘Q [wflaz +w£2j_——a_$j—— de dr (3' 8)
(3) For =2, Nflqz (& o) (a1» ag=1, 2, -, m) are the solution of following prob-
lem
aan (E,T)
A'lpp(f)cp(é)—l—sr——
) 9Nfu &) 3 » »
aN? (&,D ~
—wf_(&)——;?——wfaz ©O+k, =0,(60€QXO0,1) 3.9
25 $] 1 1

Nflﬂ2 (&, 1) is 1-periodic function with respect to &,

JQ P, (ON, (&,00de=0,



N ( o>—{0’ p=0
@, a, 5’ N:l_,iz (E’l)’ SGQ’ p>1.

In the above formula, the weighted integration of Nm‘f’1 . (&, 1) is 0, and the weighted func-

tion is p, (§) ¢, (&).
(4) The ug (x, t) is defined as follows

(l'yt) ~

lop (©)c, (O —t kfl‘,2 oy, Uy (z2,8)=f(z,2), (2,) E QX (2pstp4y)
aN (691’)
—” w! (O — 5 — dedr-i-Jwaa(E)dé (3.10)
y) 172

lop (&) c, (O] = IQPP(E)cp(é)dé

and the initial condition is

u§<x,0)=<{g;(x)’lfp—o,’ (3.1D)
Uy (xstp),Hif p=1
and the boundary condition is
uy (x48) =gy (x58) 5 (2,£) €30 X (0, T) (3.12)
Now set
W (x,)=ul(x,t),as(x,t)E QX (tp, tpr1), p=0, 1, =+, P—1 (3.13)

Then «° (x, ¢) is defined on X [0, T] and satisfied the initial conditions and bounda-
ry conditions, called as the macroscopic homogenization solution of the problem (2. 1).

The l-order cell probems (I{Z23) involve the macro-scale and the micro-scale together.
In practical computation, we only need to calculate the 1-order or 2-order asymptotic expan-
sions. So in this paper, we only discuss the 2-order approximation of ut.

For the equation (3.9), set
V={v€ H' (Q) |v is 1-periodic function of &, JQ pp (&), (O)vde=0},
H=L%2(Q).

We have the following results.
Theorem 3. 2There exists a unique solution to Problem (3. 9).
Theorem 3. 32‘: o (a15 @z=1, 2, ++, n) are symmetric positive matrixes.
Theorem 3. 4The homogenization equation (3.10)~(3.12) and each cell problem (3.7) ad-

mit a unique solution.

4 The Approximate Solution of Time-space Coupled TSM and its Error Esti-
mation

In this section, we show the approximate solution with four finite terms for the asymp-
totic expansions of time-space coupled TSM and its error estimation. As we have known,
such an approximation is needed in the practical computation.

8



For brevity, denote
Pr =P (8> cp=c, (8D
Nf:Nf(G’T)’ uop=ug(1yt).

For the asymptotic expansions of time-space coupled TSM in previous section the second

order approximation solution can be written as

u(x,)=u’+eN? D' &°+e2N? D2 ° 4.
. 2 b4 e Ty P aa, e, P
For p=0, 1, -, P—1, set
« 9 3 (4p 3
L, =ppcp >, axi(k,.j ax,.) 4.2

Applying the operator L} to (u* —u;) (z, t), we obtain the coefficient of ¢!, ¢°,
¢!, < of error equation, respectively, as follows.
The coefficient of ¢! is

10
Dm1 U,

? » o »
R aNal 1o 2 i, Ju, 3 IN?
A Cppc, ——D_u,+ 4
dr i 0g;

@ P ¢; aqu g;
L IN :1 awf;l a aN? 1.0
== —y— —_— @)
A ppe, 5 + 3, + %, -wf; —afj o %p

Taking into account the equation (3.7), we obtain that the coeffcient of e~ 1is zero.

(4.3

The coefficient of €° of the error equation satisfies

o N 5[, N
— — —1 1% 1%
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So the error equation with second order approximation can be writen as
L (ut—uy) =¢F* (4.5)
where
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The boundary condition is

Cus (s ) —uy (250)) lanxce, e, ) = —eNT Di!U*;—eszlaz D U 4.7)
And the initial condition is
(us (z,0)—u5(z2,0))=0 (4. 8
Define
B=H'(0,T),H*() (4.9

B is Banach space equipped with the following norm
T
||u(x,t)||,25= JO (”u(- ’t)”HA +||ul(. ’t)”H4 )zdt9 V uEB (4. 10)

For the 2-order approximate solution u; (x, #), we acquire the following error estima-
tion:

Theorem 4.1 Assume that u(; € H' ((0,T),H*(Q)) is the solution of the homogeniza-
tion problem (3.10)~(3.13), N7 € H' ((0,1),w"™ (Q))and N7, (&0 € H'((0,1),
w2 (Q)), a;s az=1, ++, n, are the solutions of the unit cell problems in previous sec-

tion, then the problem (4.5)~(4.8) has a unique solution u* —u;. Moreover, (u*—uj)
€ B, and there exists a constant ¢, which only depends on A5 s gos pms s cms £} and
T, such that
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