[RREPRLEE © 7T & KD AT

PEARSON
—

Addison
Wesley

C# Primer A Practical Approach

¥4 {£¥& Stan Lippman
#% (C++ Primer) EEHIER

C# Primer

(5 EIAR)

[%] Stanley B. Lippman

ik DA A A oL

www.infopower.com.cn

MMRR - FR KR

C# Primer A Practical Approach

C# Primer

(B EIAR)

[%] Stanley B. Lippman 3

F @RS G L

C# Primer A Practical Approach (ISBN 0-201-72955-5)

Stanley B. Lippman

Copyright © 2002 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley Longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A HENNR i Pearson Education 4L i 7 AL ZE R EIE I (. BUTMFAIATBIR MG
X ERSM) BRHR. KT
RAHREREFA, AELUEM T A HERDRA BT

A B H WA Pearson Education Bith#rss, EHEHENEBRHE.
LR HRRBUREESRFILS: BF: 01-2003-3824

EHEERE (CIP) ¥iB

C#Primer/ (%) FI8%E. —REA. —Ib5t. PEANHEME, 2003
RRURER « FFRRIMRS)

ISBN 7-5083-1090-X

... ILA.. [LCES-—BERFR—FEL N.TP3I2
o E R A B 398 CIP $iB#F (2003) 28 067671 5

WARE: PES S HEM JEETERE = Bk 6 5, B84 100044) hitp://www.infopower.com.cn

BT BRMES:

M B B BRAR - FRKITRS

B #: C#Primer (ZHIR)

(3£) Stanley B. Lippman

fEE AR

Hihk: JEF = BRB&R6S BRB4RED: 100044
Bi%: (010) 88515918 £ HE: (010) 88518169
LENFHEFRAH

FHEHIE QISR RITH

787X 1092 1/16 B 3k 26
ISBN 7-5083-1090-X

20039 H LR E—R

20034F9 H B —IKENk

48.00 7T

=
b =

IRk N S
TEIRXFIRNE

Beth

Imagine, we have shared a lifetime together.
Thanks for understanding
and being there

Danny

Hey, dude. Wassup?
So this is what I've been doing—

| know you thought | just didn't want to help with your algebra ...

Anna

Whoa. It's really done. | know, finally.
A slew of IOU’s:
Legoland, the batting cage, Hogwarts ...

And in loving memory of
George and Ray Lippman

Preface

C# is a new language invented at Microsoft and introduced with Visual Stu-
dio.NET. More than a million lines of C# code already have gone into the imple-
mentation of the .NET class framework. This book covers the C# language and
its use in programming the .NET class framework, illustrating application do-
mains such as ASP.NET and XML.

My general strategy in presenting the material is to introduce a programming
task and then walk through one or two implementations, introducing language
features or aspects of the class framework as they prove useful. The goal is to
demonstrate how to use the language and class framework to solve problems
rather than simply to list language features and the class framework API.

Learning C# is a two-step process: learning the details of the C# language
and then becoming familiar with the .NET class framework. This two-step pro-
cess is reflected in the organization of this text.

In the first step we walk through the language—both its mechanisms, such
as class and interface inheritance and delegates, and its underlying concepts,
such as its unified type system, reference versus value types, boxing, and so on.
This step is covered in the first four chapters.

The second step is to become familiar with the .NET class framework, in par-
ticular with Windows and Web programming and the support for XML. This is the
focus of the second half of the book.

Working your way through the text should jump-start your C# programming
skills. In addition, you'll become familiar with a good swatch of the .NET class
framework. All the program code is available for download at my company's Web
site www.objectwrite.com.

Mail can be sent to me directly at slippman@objectwrite.com.

PREFACE

xiii

Xiv

Organization of the Book

The book is organized into eight relatively long chapters. The first four chapters
focus on the C# language, looking at the builtin language features, the class
mechanism, class inheritance, and interface inheritance. The second four chap-
ters explore the various library domains supported within the .NET class frame-
work.,

Chapter 1 covers the basic language, as well as some of the fundamental
classes provided within the class framework. The discussion is driven by the de-
sign of a small program. Concepts such as namespaces, exception handling,
and the unified type system are introduced.

Chapter 2 covers the fundamentals of building classes. We look at access
permission, distinguish between const and readonly members, and cover
specialized methods such as indexers and properties. We walk through the dif-
ferent strategies of member initialization, as well as the rules for operator over-
loading and conversion operators. We look at the delegate type, which serves
as a kind of universal pointer to a function.

Chapters 3 and 4 cover, in turn, class and interface inheritance. Class inher-
itance allows us to define a family of specialized types that override a generic in-
terface, such as an abstract webRequest base class and a protocol-specific
HttpWebRequest Subtype. Interface inheritance, on the other hand, allows us
to provide a common service or shared attribute for otherwise unrelated types.
For example, the 1Disposable interface frees resources. Classes holding da-
tabase connections or window handles are both likely to implement 1Dispos-
able, although they are otherwise unrelated.

Chapter 5 provides a wide-ranging tour of the .NET class library. We look at
input and output, including file and directory manipulation, regular expressions,
sockets and thread programming, the webRequest and webResponse class
hierarchies, a brief introduction to ADO.NET and establishing database connec-
tions, and the use of XML.

Chapters 6 and 7 cover, in turn, drag-and-drop Windows Forms and Web
Forms development. Chapter 7 focuses on ASP.NET, and the Web page life cy-
cle. Both chapters provide lots of examples of using the prebuilt controls and at-
taching event handlers for user interaction.

Cit PRIMER

The final chapter provides a programmer’s introduction to the .NET Common
Language Runtime. It focuses on assemblies, type reflection, and attributes, and
concludes with a brief look at the underlying intermediate language that is the
compilation target of all .NET languages.

Written for Programmers

The book does not assume that you know C++, Visual Basic, or Java. But it does
assume that you have programmed in some language. So, for example, | don't
assume that you know the exact syntax of the C# foreach loop statement, but
| do assume that you know what a loop is. Although | will illustrate how to invoke
a function in C#, | assume you know what | mean when | say we “invoke a func-
tion.” This text does not require previous knowledge of object-oriented program-
ming or of the earlier versions of ASP and ADO.

Some people—some very bright people—argue that under .NET, the pro-
gramming language is secondary to the underlying Common Language Runtime
(CLR) upon which the languages float like the continents on tectonic plates. |
don't agree. Language is how we express ourselves, and the choice of one’s lan-
guage affects the design of our programs. The underlying assumption of this
book is that C# is the preferred language for .NET programming.

The book is organized into eight relatively long chapters. The first set of four
chapters focuses on the C# language, looking at the built-in language features,
the class mechanism, class inheritance, and interface inheritance. The second
set of four chapters explores the various library domains supported within the
.NET class framework, such as regular expressions, threading, sockets, Win-
dows Forms, ASP.NET, and the Common Language Runtime.

Lexical Conventions |

Type names, objects, and keywords are set off in Courier font, as in int, a pre-
defined language type; console, a class defined in the framework; maxCount,
an object defined either as a data member or as a local object within a function;
and foreach, one of the predefined loop statements. Function names are fol-
lowed by an empty pair of parentheses, as in writeLine () . The firstintroduc-
tion of a concept, such as garbage collection or data encapsulation, is

PREFACE

XV

Xvi

highlighted in italics. These conventions are intended to make the text more
readable.

Acknowledgments

This book is the result of many invisible hands helping to keep its author on
course. My most heartfelt thanks go to my wife, Beth, and my two children,
Daniel and Anna. | have accumulated all too many 10Us in deferring this or that
family outing in order to get this book done. Thank you all for being (mostly) pa-
tient and understanding and not too often asking if | was done yet.

| need to thank Caro Segal and Shimon Cohen of you-niversity.com, who pro-
vided me with a generous gift of time and encouragement. May the force be with
you. | also owe a serious round of thanks to Eric Gunnerson, Peter Drayton, and
Don Box, all of whom at one time or another fulfilled the role of white knight on
horseback.

| would like to deeply thank Elena Driskill. Twice. First for the gift of those
lovely drawings in Chapter 6. Second for her kind permission to reproduce them.

Deborah Lafferty has been my editor since the first edition of my C++
Primer back in 1986. She has been a constant source of good sense and under-
standing, and | deeply appreciate her encouragement (and prodding) in seeing
this project through.

A pair of special production thanks go to Stephanie Hiebert and Steve Hall.
Stephanie is the supreme copy editor of my nearly two decades of publishing.
She made this a better book. Steve hoisted me back onto my typesetting saddie
after having been thrown by wildly pernicious Framemaker problems. A tip of my
virtual hat to the both of you.

The following reviewers offered numerous thoughtful comments and sugges-
tions in reviewing various drafts of this manuscript: Indira Dhingra (special thanks
for providing a final sanity check of the manuscript), Cay Horstmann, Eugene
Kain, Jeff Kwak, Michael Lierheimer, Drew Nathanson, Clovis Tondo, and Damien
Watkins.

Portions of this manuscript have been tried out in courses and talks held
across the globe: Sydney, Amsterdam, Munich, Tel Aviv, Orlando, San Francisco,
and San Jose. Thanks to everyone who provided feedback.

C# PRIMER

Resources

The richest documentation that you will be returning to time and again is the Vi-
sual Studio.NET documentation. The .NET framework reference is essential to
doing any sort of C#/.NET programming.

Another rich source of information about .NET consists of the featured arti-
cles and columns in the MSDN Magazine. I'm always impressed by what | find in
each issue. You can find it online at http://msdn.microsoft.com/msdnmag.

The DOTNET mailing list sponsored by DevelopMentor is a rich source of in-
formation. You can subscribe to it at http://discuss.develop.com.

Anything Jeffrey Richter, Don Box, Aaron Skonnard, or Jeff Prosise writes
about .NET (or XML in Aaron’s case) should be considered essential reading.
Currently, most of their writing has appeared only as articles in MSDN Magazine.

Here is the collection of books that | have referenced or found helpful:

Active Server Pages+, by Richard Anderson, Alex Homer, Rob Howard, and
Dave Sussman, Wrox Press, Birmingham, England, 2000.

C# Essentials, by Ben Albahari, Peter Drayton, and Brad Merrill, O'Reilly,
Cambridge, MA, 2001.

C# Programming, by Burton Harvey, Simon Robinson, Julian Templeman,
and Karli Watson, Wrox Press, Birmingham, England, 2000.

Essential XML: Beyond Markup, by Don Box, Aaron Skonnard, and John
Lam, Addison-Wesley, Boston, 2000.

Microsoft C# Language Specifications, Microsoft Press, Redmond, WA,
2001.

A Programmer’s Introduction to C#, 2nd Edition, by Eric Gunnerson, Apress,
Berkeley, CA, 2001.

Stanley Lippman

Los Angeles
November 18, 2001
www.objectwrite.com

PREFACE

Xvii

Contents

Preface Xiii
1 Hello, C# 1
1.1 AFirst C# Program 1
1.2 Namespaces 6
1.3 Alternative Forms of the Main () Function 10
1.4 Making a Statement 11
1.5 Opening a Text File for Reading and Writing 17
1.6 Formatting Output 19
1.7 The string Type 21
1.8 Local Objects 24
1.9 Value and Reference Types 28
1.10 The C# Array 29
1.11 The new Expression 30
1.12 Garbage Collection 32
1.13 Dynamic Arrays: The ArrayList Collection Class 33
1.14 The Unified Type System 35
1.14.1 Shadow Boxing 36
1.14.2 Unboxing Leaves Us Downcast 37

1.15 Jagged Arrays 39
1.16 The Hashtable Container 41
1.17 Exception Handling 44
1.18 A Basic Language Handbook for C# 47
1.18.1 Keywords 47
1.18.2 Built-in Numeric Types 49
1.18.3 Arithmetic, Relational, and Conditional Operators 51
1.18.4 Operator Precedence 54
1.18.5 Statements 55

CONTENTS vii

viil

2 Class Design

2.1 Our First Independent Class
2.2 Opening a New Visual Studio Project
2.3 Declaring Data Members
2.4 Properties
2.5 Indexers
2.6 Member Initialization
2.7 The Class Constructor
2.8 The Implicit this Reference
2.9 static Class Members
2.10 const and readonly Data Members
2.11 The enum Value Type
2.12 The delegate Type
2.13 Function Parameter Semantics
2.13.1 Pass by Value
2.13.2 Pass by Reference: The rer Parameter
2.13.3 Pass by Reference: The out Parameter
2.14 Function Overloading
2.14.1 Resolving Overload Functions
2.14.2 Determining a Best Match
2.15 Variabledl ength Parameter Lists
2.16 Operator Overloading
2.17 Conversion Operators
2.18 The Class Destructor
2.19 The struct Value Type

Object-Oriented Programming

3.1 Object-Oriented Programming Concepts
3.2 Supporting a Polymorphic Query Language
3.3 Designing a Class Hierarchy

3.4 Object Lessons

3.5 Designing an Abstract Base Class

3.6 Declaring an Abstract Base Class

3.7 Static Members of an Abstract Base Class
3.8 A Hybrid Abstract Base Class

C# PRIMER

59
59
63
66
67
69
72
73
76
79
81
83
86
92
94
96
97
99

100

101

103

107

110

113

113

117
117
121
124
128
132
133
137
138

3.8.1 The Single-Inheritance Object Model
3.8.2 How Is a Hybrid Abstract Class Different?

3.9 Defining a Derived Class

3.10 Overriding the Inherited Virtual Interface

3.11 Overriding the Virtual object Methods

3.12 Member Access: The new and base Modifiers
3.12.1 Accessibility versus Visibility
3.12.2 Encapsulating Base-Class Access

3.13 Sealing a Class

3.14 The Exception Class Hierarchy

Interface Inheritance
4.1 implementing a System Interface: IComparable
4.2 Accessing an Existing Interface
4.3 Defining an Interface
4.3.1 Implementing Our Interface: Proof of Concept
4.3.2 Integrating Our Interface within the System Framework
4.4 Explicit Interface Member Implementations
4.5 Inherited Interface Members
4.6 Overloaded, Hidden, or Ambiguous?
4.7 Mastering Copy Semantics: ICloneable
4.8 Mastering Finalize Semantics: IDisposable
4.9 Bitvector: Extension through Composition

Exploring the System Namespace

5.1 Supporting the Fundamental Types

5.2 The Array Is a system.Array

5.3 Querying the Environment
5.3.1 The Environment Class
5.3.2 Accessing All the Environment Variables
5.3.3 The process Class
5.3.4 Finding the Logical Drives

5.4 system.I0
5.4.1 Handling File Extensions: The path Class
5.4.2 Manipulating Directories
5.4.3 Manipulating Files
5.4.4 Reading and Writing Files

5.5 A System Miscellany _
5.5.1 The system.collections. Stack Container

140
141
143
145
146
147
150
151
153
154

159
160
163
166
168
174
178
180
183
185
187
190

199
199
200
203
204
205
207
208
209
210
212
215
216
221
221

CONTENTS

5.5.2 The System.Diagnostics.TracelListener Class 223

5.5.3 System.Math 225
5.5.4 The pateTime Class 226

5.6 Regular Expressions 228
5.7 system.Threading 235
5.8 The Web Request/Response Model 241
5.9 system.Net.Sockets 245
5.9.1 The Server-Side TcpListener 246
5.9.2 The Client-Side Tcpclient 248

5.10 system.Data 249
5.10.1 The Database Tables 250
5.10.2 Opening the Database: Selecting a Data Provider 252
5.10.3 Navigating the pataTable 254
5.10.4 Setting Up the pataRelation 257
5.10.5 Selection and Expressions 258

5.11 system.XML 259
5.11.1 Getting XML Out of Our Programs 260
5.11.2 xml TextReader: The Firehose 265
5.11.3 Document Object Model 272
5.11.4 System.Xml.Xs1 277
5.11.5 system. Xml.XPath 279

6 Windows Forms Designer ‘ 283
6.1 Our First Windows Forms Program 283
6.2 Building the GUI 285
6.3 Implementing the Event Callback Routines 288
6.3.1 Implementing a TextBox Event 292
6.3.2 Implementing the Button Events: OK 293
6.3.3 Implementing the Button Events: Quit 295

6.4 Inspecting and Generating Control Events 295
6.4.1 Labels Are Programmable 296

6.5 Implementing the MessageBox Pop-Up Dialog 298
6.6 The List Box for Unformatted Output 299
6.7 Exploring the File Dialog 302
6.8 A Pocketful of Buttons 304
6.9 Serving Up Menus 306
6.10 The pataGrid Control 308
6.11 Adding a PictureBox Control 310

C# PRIMER

7 ASP.NET and Web Forms Designer 315

7.1 Our First Web Forms Program 316
7.2 Opening an ASP.NET Web Application Project 316
7.2.1 Modifying the Document Properties 318

7.2.2 Adding Controls to the Document: rabe1 319

7.3 Adding Pages to a Project 320
7.4 The HyperLink Control: Linking to Other Pages 321
7.5 The pataGrid Control 321
7.6 Understanding the Page Event Life Cycle 323
7.7 The Data Provider 325
7.8 Web State Management 326
7.8.1 Adding a rextBox Control 328
7.8.2 Adding an rmageButton Control 329
7.8.3 Adding a ListBox Control 329

7.9 Managing State: Class Members 331
7.10 Managing State: The session Object 332
7.11 Managing State: The Application Object 333
7.12 Validation Controls 334
7.13 Adding a DropDownList Control 335
7.14 Adding a Group of RadioButton Controls 337
7.15 Adding a checkBoxList Control 338
7.16 Adding Validators to a Control 340
7.17 Adding a calendar Control 344
7.18 Adding an 1mage Control 345
7.19 Programming Web Server Controls 345
8 The Common Language Runtime 349
8.1 Assemblies 349
8.2 Runtime Type Reflection 353
8.3 Moadifying the Retrieval through BindingFlags 358
8.4 Invoking a Method during Runtime ' 362
8.5 Delegating the Test to Reflection 364
8.6 Attributes 367
8.6.1 The Intrinsic conditional Attribute 367
8.6.2 The Intrinsic serializable Attribute 369
8.6.3 The Intrinsic p11import Attribute 370

8.7 Implementing Our Own Attribute Class 372
8.7.1 Positional and Named Parameters 375

CONTENTS

Xii

8.7.2 AttributeUsage
8.8 Runtime Discovery of Attributes Using Reflection
8.9 The Intermediate Language
8.9.1 Examining the Intermediate Language
8.9.2 The ildasm Tool

Index

C# PRIMER

376
376
378
379
381

385

Chapter 1

Hello, C#

My daughter has cycled through a number of musical instruments. With each one
she is anxious to begin playing the classics—no, not Schubert or Schoenberg,
but the Backstreet Boys and Britney Spears. Her various teachers, keen to keep
her interest while grounding her in the fundamentals, have tended to indulge her.
In a sense this chapter attempts the same precarious balance in presenting C#.
In this context the classics are represented by Web Forms and Type Inheritance.
The fundamentals are the seemingly mundane predefined language elements
and mechanisms, such as scoping rules, arithmetic types, and namespaces. My
approach is to introduce the language elements as they become necessary to
implement a small first program. For those more traditionally minded, the chap-
ter ends with a summary listing of the predefined language elements.

C# supports both integral and floating-point numeric types, as well as a Bool-
ean type, a Unicode character type, and a high-precision decimal type. These
are referred to as the simple types. Associated with these types is a set of oper-
ators, including addition (+), subtraction (-), equality (==), and inequality (! =). C#
provides a predefined set of statements as well, such as the conditional i f and
switch statements and the looping for, while, and foreach statements. All
of these, as well as the namespace and exception-handling mechanisms, are
covered in this chapter.

1.1 AFirst C# Program
The traditional first program in a new language is one that prints Hello, World! on
the user's console. In C# this program is implemented as follows:

// our first C# program
using System;
class Hello
{
public static void Main()
{
Console.WriteLine("Hello, World!");
}
}

When compiled and executed, this code generates the canonical
Hello, World!

Our program consists of four elements: (1) a comment, introduced by the
double slash (//), (2) a using directive, (3) a class definition, and (4) a class
member function (alternatively called a class method) named Main ().

A C# program begins execution in the class member function Main (). This
is called the program entry point. Main () must be defined as static. In our
example, we declare it as both public and static.

public identifies the level of access granted to Main (). A member of a
class declared as public can be accessed from anywhere within the program.
A class member is generally either a member function, performing a particular
operation associated with the behavior of the class, or a data member, contain-
ing a value associated with the state of the class. Typically, class member func-
tions are declared as public and data members are declared as private.
(We'll look at member access levels again as we begin designing classes.)

Generally, the member functions of a class support the behavior associated
with the class. For example, writeLine () is a public member function of the
Console class. writeLine () prints its output to the user's console, followed
by a newdine character. The Console class provides a write() function as
well. write () prints its output to the terminal, but without inserting a new-line
character. Typically, we use write () when we wish the user to respond o a
query posted to the console, and writeLine () when we are simply displaying
information. We'll see a relevant example shortly.

As C# programmers, our primary activity is the design and implementation
of classes. What are classes? Usually they represent the entities in our applica-

C# PRIMER

