2o v SOBLRL A 3 e B

WEALER i 2 A
Bak B3IMP UK
H: i A3 416 o Xl

The Art of Computer
Programming, Volume 4
Generating All Combinations
and Permutations

DIEHRE =F Fascicle

(Z%) Donald E.Knuth 3

vf%ﬂlﬂﬁ‘? i EA

%4% %3)31

A A AL Aoy R
oo

The Art of Computer Programming Volume
4 Fascicle 3
Generating All Combinations and Partitions

O i hR)

Donald E. Knuth ¥

AR K

€9

Mo T R A

China Machine Press

RTREIFHX ZHERFCL2RPBLINAR BRI EIRZ0E CHERR. X
LA BRI AR B 48 5 2 HBIF T AR SR GHENRFRITZEAR $48 AARK
&, EAXRTAGERNITRK-EN—8g, X—WMAHXTABRFTAEAE My Pt
. FEKnuthitREXRANTEIED, EEAVNEKBARZFANE, FLERASN 561
FEIRITRILFHEMB N G TR ERRR. —wBE, BhEETAENIEME
A PR AR

Simplified Chinese edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: The Art of Computer Programming, Volume 4, Fascicle 3,
Generating All Combinations and Partitions (0-201-85394-9), by Donald E Knuth , Copyright © 2005.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as ADDISON WESLEY.

A B H W A Pearson Education (HAHKH HMER) BB thhi%, KiEHEAE

IRILERE . BALBR.
FHEEWE AR RARITEEH

ABEEICS: EF: 01-2005-4843
BEEAEERE (CIP) 8B

WHENBFRUZA $48 B30, ERAEHALOR (WER) / (£) w84
(Knuth,D.E.) #. %ia/HiE. — 403 SR T HRH:, 2006.8

B&FX: The Art of Computer Programming, Volume 4, Fascicle 3, Generating All
Combinations and Partitions

ISBN 7-111-17774-6

1.it 0.0%-- OF - N EBFiE+ IV.TP3I1.1
A B CIPH IR B (2006) 51260145

PR D AR #: (s didaskis [7 16 A#i22 'S MBSCARRY 100037)

TG K

JEAEREENRIA RA FENR - FEHIEFILRKITH AT
20064E8 F 58 1hR 58 1k EN R

170mm x 242mm * 20.5E13k

EHr: 45.005¢

AR, wmAEET. Bil. i, hediiTHiEk
A3 thek: (010) 68326294

Donald E. Knuth
(EE-E TR, PXAREN)

 REEMEFEEARNERE, FEWT
HEHHER R 4 TEXFIMETAFONT, fhHE
RERMAABOENL, MMRTARE
WL, (EAREEXEIENERR
I EARMRERAERE, KnuthBlERAE
| EPRORTIERTE AL X T AR i
HMEBE. KnuthBHBHRE TiF S RIS
¥, AFEEZETHENHLERRE (ACM
' Turing Award) , E£E#ESFEETHR
%% (Medal of Science) , £E¥¥¥
£HT%E /R (AMS Steele Prize) , KR
 BEEMRHR (Kyoto Prize) ,

FARHALE

o LRSS KAk

HRHRF R ZA

' {3 . Donald E.Knuth

BE. HER

!
(e Lt
L L eassanszsenn

IR R ZA

BB WM ONWRD)
MMIX: 3 TAEMRISCH ST

The A ar

cenpuer
Vohume 1
Al
nas e Fascrcie

() Donald E.Knuth ¥
asiasts

[1] -

WHAREFRH ZA

B40 B2M (WA
AR AR

i
! -
' n AU TR KW
% NEWLY AVAILABLE SECTIONS OF
! o LA WK,

The Art of
Computer
Programming

vouna «
Generating Al Trees
Mimony f Crentmaerral
(eneran

1 DONALD E. KNUTIH

Orsiean

SEEEXIE

F1E BRLEM)
MMIX 27 F-4ERIRISCit Bl

20064E4 B kR
ISBN 7-111-18031-3
Ef: 45.00 5T

B4t BARUER)

£ RATE TAHES

200647 BiiAR
ISBN 7-111-17773-8
EHr: 45.00 T

$4% BARUEMR)
4 RAR—ASERNTEE
Fii+20064E12 BHHkR

ERETHH

PREFACE

In my preface to the first edition,

! begged the reader not to draw attention to errors.

{ now wish | had not done so

and am grateful to the few readers who ignored my request.

— STUART SUTHERLAND, The International Dictionary of Psychology (1996)

THIS BOOKLET is Fascicle 3 of The Art of Computer Programming, Volume 4:
Combinatorial Algorithms. As explained in the preface to Fascicle 1 of Volume 1,
I’'m circulating the material in this preliminary form because I know that the
task of completing Volume 4 will take many years; I can’t wait for people to
begin reading what I've written so far and to provide valuable feedback.

To put the material in context, this fascicle contains Sections 7.2.1.3, 7.2.1.4,
and 7.2.1.5 of a long, long chapter on combinatorial searching. Chapter 7
will eventually fill three volumes (namely Volumes 4A, 4B, and 4C), assuming
that I'm able to remain healthy. It will begin with a short review of graph
theory, with emphasis on some highlights of significant graphs in The Stanford
GraphBase, from which I will be drawing many examples. Then comes Section
7.1, which deals with bitwise manipulation and with algorithms relating to
Boolean functions. Section 7.2 is about generating all possibilities, and it begins
with Section 7.2.1: Generating Basic Combinatorial Patterns. Details about
various useful ways to generate n-tuples appear in Section 7.2.1.1, and the
generation of permutations is discussed in Section 7.2.1.2. That sets the stage for
the main contents of the present booklet, namely Section 7.2.1.3 (which extends
the ideas to combinations of n things taken ¢ at a time); Section 7.2.1.4 (about
partitions of an integer); and Section 7.2.1.5 (about partitions of a set). Then
will come Section 7.2.1.6 (about trees) and Section 7.2.1.7 (about the history of
combinatorial generation), in Fascicle 4. Section 7.2.2 will deal with backtracking
in general. And so it will go on, if all goes well; an outline of the entire Chapter 7
as currently envisaged appears on the taocp webpage that is cited on page ii.

I had great pleasure writing this material, akin to the thrill of excitement
that I felt when writing Volume 2 many years ago. As in Volume 2, where I
found to my delight that the basic principles of elementary probability theory
and number theory arose naturally in the study of algorithms for random number
generation and arithmetic, I learned while preparing Section 7.2.1 that the basic
principles of elementary combinatorics arise naturally and in a highly motivated
way when we study algorithms for combinatorial generation. Thus, I found once
again that a beautiful story was “out there” waiting to be told.

v PREFACE

For example, in the present booklet we find many of the beautiful patterns
formed by combinations, with and without repetition, and how they relate to
famous theorems of extremal combinatorics. Then comes my chance to tell
the extraordinary story of partitions; indeed, the theory of partitions is one
of the nicest chapters in all of mathematics. And in Section 7.2.1.5, a little-
known triangle of numbers, discovered by C. S. Peirce, turns out to simplify
and unify the study of set partitions, another vital topic. Along the way I've
included expositions of two mathematical techniques of great importance in the
analysis of algorithms: Poisson’s summation formula, and the powerful saddle
point method. There are games and puzzles too, as in the previous fascicles.

My original intention was to devote far less space to these subjects. But
when I saw how fundamental the ideas were for combinatorial studies in general,
I knew that I could never be happy unless I covered the basics quite thoroughly.
Therefore I've done my best to build a solid foundation of theoretical and
practical ideas that will support many kinds of reliable superstructures.

I thank Frank Ruskey for bravely foisting an early draft of this material on
college students and for telling me about his classroom experiences. Many other
readers have also helped me to check the first drafts; I wish to thank especially
George Clements and Svante Janson for their penetrating comments.

I shall happily pay a finder’s fee of $2.56 for each error in this fascicle when
it is first reported to me, whether that error be typographical, technical, or
historical. The same reward holds for items that I forgot to put in the index.
And valuable suggestions for improvements to the text are worth 32¢ each.
(Furthermore, if you find a better solution to an exercise, I'll actually reward
you with immortal glory instead of mere money, by publishing your name in the
eventual book:—)

Notations that are used here and not otherwise explained can be found in
the Index to Notations at the end of Volumes 1, 2, or 3. Those indexes point to
the places where further information is available. Of course Volume 4 will some
day contain its own Index to Notations.

Machine-language examples in all future editions of The Art of Computer
Programming will be based on the MMIX computer, which is described in Vol-
ume 1, Fascicle 1.

Cross references to yet-unwritten material sometimes appear as ‘00’ in the
following pages; this impossible value is a placeholder for the actual numbers to
be supplied later.

Happy reading!

Stanford, California D.E. K.
June 2005

CONTENTS

PrEEACE - v vvverermsrenmsaen e tnn e ettt bt et s e e e s e e e e i
Chapter 7 Combinatorial Searching
7.2 Generating All Possibilities -+ rooooorveree e 0
7.2.1 Generating Basic Combinatorial Patterns -0
7.2.1.1 Generating all A-tuples ++« e rerrrmreeesmintmit s 0
7.2.1.2 Generating all permutations ««+««««++sr+eeseessensinrinciiiiiaiin()
7.2.1.3 Generating all cOMbINALIONS - ++xssessrsresreressnenineniciicnnen I}
7.2.1.4 Generating all partitions «-----weesersisrsirrirssie e 36
7.2.1.5 Generating all Set PArtitions ««+«+-«+xseeressrnmerensnriieie 61
ANSWETLS £0 EEX@ICISES +++vv+verrrrreesrers ettt it ee a1 00 87
H X
> E452 147
‘é‘ .. 151
BTE HAAER
72 &ﬁiﬂi’ﬁﬁlﬁﬁﬁ R R Y7 ¢
721 E&E#;B{Jéﬂ/ﬁ&ﬁit Y 574
72.1.1 Eﬁﬁﬁﬁnﬁéﬂ .. 154
7212 @Eb&:%ﬁﬁkﬁ“ .. 154
7213 ﬁiﬁkﬁﬁﬁﬁ% .. 154
7214 HERRBIEADR] oo 188
7215 HERIAEELSRISE] o 22
STEB S F v vverersemene oo e e s e 238
...................... 305

ﬁglﬂ]ﬁ[ﬁ ..

BE-ANETRE—TORERY T, MELERLE-NFTOREASX].
— 3 i L4 % - {748 (Alexander Hume), Orthographie---of the Britan Tongue

(#516205%)

7.2.1.3 GENERATING ALL COMBINATIONS 1

7.2.1.3. Generating all combinations. Combinatorial mathematics is often
described as “the study of permutations, combinations, etc.,” so we turn our
attention now to combinations. A combination of n things, taken t at a time,
often called simply a t-combination of n things, is a way to select a subset of size ¢
from a given set of size n. We know from Eq. 1.2.6—(2) that there are exactly ('t‘)
ways to do this; and we learned in Section 3.4.2 how to choose t-combinations
at random.

Selecting t of n objects is equivalent to choosing the n — ¢ elements not
selected. We will emphasize this symmetry by letting

n=sg+t (1)

throughout our discussion, and we will often refer to a t-combination of n things
as an “(s,t)-combination.” Thus, an (s,t)-combination is a way to subdivide
s + t objects into two collections of sizes s and ¢.

If | ask how many combinations of 21 can be taken out of 25,
| do in effect ask how many combinations of 4 may be taken.
For there are just as many ways of taking 21 as there are of leaving 4.

— AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)

There are two main ways to represent (s,t)-combinations: We can list the
elements c; . .. cyc; that have been selected, or we can work with binary strings
Gp—1 - ..0a1a¢ for which

@n-1+:-+ay1+a =t (2)

The latter representation has s Os and t 1s, corresponding to elements that are
unselected or selected. The list representation c; ... cyc; tends to work out best
if we let the elements be members of the set {0,1,...,n — 1} and if we list them
in decreasing order:
n>c>--->cp>c 20 (3)
Binary notation connects these two representations nicely, because the item list
¢; . ..cpcy corresponds to the sum
n—1
2°t 4 ... 422 429 = Zak2k = (an-1...-@100)2- (4)
k=0

2 COMBINATORIAL SEARCHING (F3) 7.2.1.3

Of course we could also list the positions b, ...byb; of the Os in an—; ...a100,

where
n>bg > >by>b 20. (5)

Combinations are important not only because subsets are omnipresent in
mathematics but also because they are equivalent to many other configurations.
For example, every (s,t)-combination corresponds to a combination of s + 1
things taken ¢ at a time with repetitions permitted, also called a multicombination,
namely a sequence of integers d; ...d2d; with

§>dy>---2>dy>dy 20. (6)
One reason is that d; . .. d2d; solves (6) if and only if ¢; . .. cac; solves (3), where
cg=di+t—-1, ..., cpo=dy+1, c=d; (7)

(see exercise 1.2.6-60). And there is another useful way to relate combinations
with repetition to ordinary combinations, suggested by Solomon Golomb [AMM
75 (1968), 530-531}, namely to define

. = Cjs ifc; < s
J €c;—sy if Cj > 8.

(8)

In this form the numbers e;...e; don’t necessarily appear in descending or-
der, but the multiset {e1,ez,...,e:} is equal to {c1,c2,...,c} if and only if
{e1,e2,...,€} is a set. (See Table 1 and exercise 1.)

An (s,t)-combination is also equivalent to a composition of n + 1 into ¢ + 1
parts, namely an ordered sum

n+1l = p .+ +p1+ po, where p4,...,p1,p0 2> 1. (9)
The connection with (3) is now
Ppr=N—Cy Pt-1=C —C—1, ..., P1=C—C, po=c1+1 (10)
Equivalently, if ¢; = p; — 1, we have
s =g+ +aq+qo, where ¢,...,91,90 > 0, (11)
a composition of s into t + 1 nonnegative parts, related to (6) by setting
gt =3 —dy, Q1= di —di—1, ..., @u=da—dy, g = d;. (12)

Furthermore it is easy to see that an (s,t)-combination is equivalent to a
path of length s + t from corner to corner of an s x t grid, because such a
path contains s vertical steps and t horizontal steps. Thus, combinations can
be studied in at least eight different guises. Table 1 illustrates all (g) = 20
possibilities in the case s =t = 3.

These cousins of combinations might seem rather bewildering at first glance,
but most of them can be understood directly from the binary representation
Gp-1...a1ag. Consider, for example, the “random” bit string

az3...a1a9 = 011001001000011111101101, (13)

7.2.1.3 GENERATING ALL COMBINATIONS 3

Table 1
THE (3,3)-COMBINATIONS AND THEIR EQUIVALENTS

asasa3a2a100 bababy caceer dadady esezer p3papipo g@3gaqigo path

000111 543 210 000 210 4111 3000 i3]
001011 542 310 100 310 3211 2100 ;3]
001101 541 320 110 320 3121 2010 223
001110 540 321 111 321 3112 2001 i3]
010011 532 410 200 010 2311 1200 H
010101 531 420 210 020 2221 1110 #H
010110 530 421 211 121 2212 1101 i)
011001 521 430 220 030 2131 1020 &8
011010 520 431 221 131 2122 1011 BB
011100 510 432 222 232 2113 1002 i3]
100011 432 510 300 110 1411 0300 i]
100101 431 520 310 220 1321 0210 i)
100110 430 521 311 221 1312 0201 i3
101001 421 530 320 330 1231 0120 B
101010 420 531 321 331 1222 0111 53]
101100 410 532 322 332 1213 0102 i)
110001 321 540 330 000 1141 0030 ii]
110010 320 541 331 111 1132 0021 253
110100 310 542 332 222 1123 0012 B
111000 210 543 333 333 1114 0003 i3]

which has s = 11 zeros and ¢ = 13 ones, hence n = 24. The dual combination
bs ... by lists the positions of the zeros, namely

23201917161413121141,

because the leftmost position is n — 1 and the rightmost is 0. The primal
combination ¢ ...c; lists the positions of the ones, namely

222118151098765320.

The corresponding multicombination d; . .. d; lists the number of 0s to the right

of each 1:
101086222222110.

The composition p; . .. pg lists the distances between consecutive 1s, if we imagine
additional 1s at the left and the right:

21335111112121.

And the nonnegative composition ¢; . ..qo counts how many Os appear between
“fenceposts” represented by 1s:

1022400000101 0;

thus we have
Un-1...0109 = 0910%-11...10710%. (14)

The paths in Table 1 also have a simple interpretation (see exercise 2).

4 COMBINATORIAL SEARCHING (F3) 7.2.1.3

Lexicographic generation. Table 1 shows combinations an_1...@a1a0 and
¢t ...c in lexicographic order, which is also the lexicographic order of d; ...d:.
Notice that the dual combinations b, ...b; and the corresponding compositions
Pt ...Po, Gt - - - go then appear in reverse lexicographic order.

Lexicographic order usually suggests the most convenient way to generate
combinatorial configurations. Indeed, Algorithm 7.2.1.2L already solves the
problem for combinations in the form a,_;...aao, since (s,t)-combinations
in bitstring form are the same as permutations of the multiset {s-0,¢-1}. That
general-purpose algorithm can be streamlined in obvious ways when it is applied
to this special case. (See also exercise 7.1-00, which presents a remarkable
sequence of seven bitwise operations that will convert any given binary number
(@n—1...@100)2 to the lexicographically next t-combination, assuming that n
does not exceed the computer’s word length.)

Let’s focus, however, on generating combinations in the other principal form
¢t . ..cac1, which is more directly relevant to the ways in which combinations are
often needed, and which is more compact than the bit strings when ¢ is small
compared to n. In the first place we should keep in mind that a simple sequence
of nested loops will do the job nicely when ¢ is very small. For example, when
t = 3 the following instructions suffice:

For c3 = 2,3, ..., n—1 (in this order) do the following:
Forc; =1,2, ..., c3 — 1 (in this order) do the following:
Forc; =0,1, ..., c; — 1 (in this order) do the following: (15)
Visit the combination cgcacy.
(See the analogous situation in 7.2.1.1-(3).)

On the other hand when ¢t is variable or not so small, we can generate
combinations lexicographically by following the general recipe discussed after
Algorithm 7.2.1.2L, namely to find the rightmost element c; that can be increased
and then to set the subsequent elements cj_j...c; to their smallest possible
values:

Algorithm L (Lezicographic combinations). This algorithm generates all t-
combinations c; ...cpc; of the n numbers {0,1,...,n — 1}, given n > ¢t > 0.
Additional variables ¢;+1 and c;42 are used as sentinels.

L1. [Initialize.] Set ¢; + j — 1 for 1 < j < t; also set ¢y41 < n and cp49 ¢ 0.

L2. [Visit.] Visit the combination c; ... czc;.

L3. [Find j.] Set j + 1. Then, whilec;+1 =cj41,set ¢; <~ j—land j « j+1;
eventually the condition ¢; + 1 # ¢;41. willoccur

L4. [Done?] Terminate the algorithm if j > t.

L5. [Increase ¢;.] Set c; ¢ ¢; + 1 and return to L2. |

The running time of this algorithm is not difficult to analyze. Step L3 sets

¢j + j — 1 just after visiting a combination for which ¢;41 = ¢1 + 7, and the
number of such combinations is the number of solutions to the inequalities

n>c¢ > >ci1 25 (16)

7.2.1.3 GENERATING ALL COMBINATIONS 5

but this formula is equivalent to a (¢ — j)-combination of the n — j objects
{n—1,..., 7}, so the assignment c; +— j—1 occurs exactly (’t‘_";) times. Summing
for 1 < j <t tells us that the loop in step L3 is performed

o)+ () =+ (5 = () (0)+ (1) = () oo

times altogether, or an average of

(,3)/(3) = m%_—m/% = (28)

times per visit. This ratio is less than 1 when ¢ < s, so Algorithm L is quite
efficient in such cases.

But the quantity ¢/(s + 1) can be embarrassingly large when ¢t is near n
and s is small. Indeed, Algorithm L occasionally sets ¢; < j — 1 needlessly, at
times when c; already equals j — 1. Further scrutiny reveals that we need not
always search for the index j that is needed in steps L4 and L5, since the correct
value of j can often be predicted from the actions just taken. For example,
after we have increased c4 and reset czcac) to their starting values 210, the next
combination will inevitably increase c3. These observations lead to a tuned-up
version of the algorithm:

Algorithm T (Lezicographic combinations). This algorithm is like Algorithm L,

but faster. It also assumes, for convenience, that ¢ < n.

T1. [Initialize.] Set ¢; + j — 1 for 1 < j < t; then set ¢t41 + 7, cey2 + 0, and
jet.

T2. (Visit.] (At this point j is the smallest index such that ¢;4; > j.) Visit the
combination ¢; ...cz¢;. Then, if j > 0, set z + j and go to step T6.

T3. [Easy case?] If ¢; + 1 < ¢, set ¢; ¢ ¢; + 1 and return to T2. Otherwise set
7«2

T4. [Find j.] Set ¢j_1 + j—2and z ¢~ ¢; +1. If £ = cj4;1, set j « j+ 1 and
repeat this step until z # ¢j41.

T5. [Done?] Terminate the algorithm if j > ¢.

T6. [Increase c;.] Set ¢; «— x, j + j — 1, and return to T2. |

Now j = 0 in step T2 if and only if ¢; > 0, so the assignments in step T4 are
never redundant. Exercise 6 carries out a complete analysis of Algorithm T.

Notice that the parameter n appears only in the initialization steps L1
and T1, not in the principal parts of Algorithms L and T. Thus we can think
of the process as generating the first (’t') combinations of an infinite list, which
depends only on t. This simplification arises because the list of {-combinations
for n+ 1 things begins with the list for n things, under our conventions; we have
been using lexicographic order on the decreasing sequences ¢; . .. c; for this very
reason, instead of working with the increasing sequences ¢; ... c;.

Derrick Lehmer noticed another pleasant property of Algorithms L and T
[Applied Combinatorial Mathematics, edited by E. F. Beckenbach (1964), 27-30]:

6 COMBINATORIAL SEARCHING (F3) 7.2.1.3

Theorem L. The combination ¢; ... cyc; is visited after exactly

Ct C2 C1
(t)+ +(2)+(1) (29)
other combinations have been visited.

Proof. There are (¢) combinations ¢} ...chc; with ¢; =c;jfort>j >k and
¢ < ¢k, namely c¢; . .. cg41 followed by the k-combinations of {0,...,ck —1}. |

When t = 3, for example, the numbers

2 (1Y (O (Y (1) (O (3\ L (2) L (0 5\ , (4, (3
B+ +0): D+E+(): B+ +G), - G+ +()
that correspond to the combinations czczc; in Table 1 simply run through the
sequence 0, 1, 2, ..., 19. Theorem L gives us a nice way to understand the
combinatorial number system of degree t, which represents every nonnegative
integer N umniquely in the form

N:(?)_*_,,,_,}_(n;)_{.(,;l), ng>--->np>n; 20, (20)

[See Ernesto Pascal, Giornale di Matematiche 25 (1887), 45-49.]
Binomial trees. The family of trees T,, defined by

T =, T, = /Nl forn >0

Ty Ty e Thy

arises in several important contexts and sheds further light on combination
generation. For example, T} is

(22)

and Ty, rendered more artistically, appears as the frontispiece to Volume 1 of
this series of books.

Notice that T, is like T;,_;, except for an additional copy of Ty, _;; therefore
T, has 2™ nodes altogether. Furthermore, the number of nodes on level ¢ is the
binomial coefficient ('t'), this fact accounts for the name “binomial tree.” Indeed,
the sequence of labels encountered on the path from the root to each node on
level t defines a combination ¢, .. .c;, and all combinations occur in lexicographic
order from left to right. Thus, Algorithms L and T can be regarded as procedures
to traverse the nodes on level ¢t of the binomial tree T,,.

7.2.1.3 GENERATING ALL COMBINATIONS 7

The infinite binomial tree T is obtained by letting n — oo in (21). The root
of this tree has infinitely many branches, but every node except for the overall
root at level 0 is the root of a finite binomial subtree. All possible ¢-combinations
appear in lexicographic order on level ¢ of T.

Let’s get more familiar with binomial trees by considering all possible ways
to pack a rucksack. More precisely, suppose we have n items that take up
respectively wy,_1, ..., w1, wo units of capacity, where

Wp-1 2+ 2 W1 2 Wi (23)
we want to generate all binary vectors a,_j ...aap such that
QW= Qn_1Wp-1+ -+ aywy +apwo < N, (24)

where N is the total capacity of a rucksack. Equivalently, we want to find all
subsets C of {0,1,...,n — 1} such that w(C) = }_ - we < N; such subsets will
be called feasible. We will write a feasible subset as c;...c;, where ¢; > --- >
¢; > 0, numbering the subscripts differently from the convention of (3) above
because t is variable in this problem.

Every feasible subset corresponds to a node of T},, and our goal is to visit
each feasible node. Clearly the parent of every feasible node is feasible, and so is
the left sibling, if any; therefore a simple tree exploration procedure works well:

Algorithm F (Filling a rucksack). This algorithm generates all feasible ways

ci ... ¢ to fill a rucksack, given wy,_1, ..., w1, wo, and N. Welet 6; = w; —w;_;

for1 <j<n.

F1. [Initialize.] Set t - 0, co ¢~ n, and r - N.

F2. [Visit.] Visit the combination c; ...c;, which uses N — 7 units of capacity.

F3. [Try to add wo.| If ¢ > 0 and 7 > wp, set t «~ t+ 1, ¢; 0, 7 < 7 — wo,
and return to F2.

F4. [Try to increase c;.] Terminate if ¢ = 0. Otherwise, if ¢;—-; > ¢; + 1 and
7> 8c,41, 86t ¢t ¢ ¢ + 1, 7 1 — J,, and return to F2.

F5. [Remove c;.] Set 7 + r+ we,, t + ¢t — 1, and return to F4. 1

Notice that the algorithm implicitly visits nodes of T,, in preorder, skipping over
unfeasible subtrees. An element ¢ > 0 is placed in the rucksack, if it fits, just
after the procedure has explored all possibilities using element ¢ — 1 in its place.
The running time is proportional to the number of feasible combinations visited
(see exercise 20).

Incidentally, the classical “knapsack problem” of operations research is dif-
ferent: It asks for a feasible subset C such that v(C) =) . v(c) is maximum,
where each item ¢ has been assigned a value v(c). Algorithm F is not a particu-
larly good way to solve that problem, because it often considers cases that could
be ruled out. For example, if C and C’ are subsets of {1,...,n—1} with w(C) <
w(C") < N —wp and v(C) > v(C"), Algorithm F will examine both C'U {0} and
C'uU{0}, but the latter subset will never improve the maximum. We will consider
methods for the classical knapsack problem later; Algorithm F is intended only
for situations when all of the feasible possibilities are potentially relevant.

8 COMBINATORIAL SEARCHING (F3) 7.2.1.3

Gray codes for combinations. Instead of merely generating all combinations,
we often prefer to visit them in such a way that each one is obtained by making
only a small change to its predecessor.

For example, we can ask for what Nijenhuis and
Wilf have called a “revolving door algorithm”: Imagine
two rooms that contain respectively s and ¢ people, with
a revolving door between them. Whenever a person
goes into the opposite room, somebody else comes out. Can we devise a sequence
of moves so that each (s,t)-combination occurs exactly once?

The answer is yes, and in fact a huge number of such patterns exist. For
example, it turns out that if we examine all n-bit strings a,,_;...aja0 in the
well-known order of Gray binary code (Section 7.2.1.1), but select only those
that have exactly s Os and ¢ 1s, the resulting strings form a revolving-door code.

Here’s the proof: Gray binary code is defined by the recurrence I',, = 0T, _,
ITR | of 7.2.1.1-(5), so its (s, t) subsequence satisfies the recurrence

Fst = OI‘(S_I),, 11"‘1}(:__1) (25)

when st > 0. We also have I'yo = 0° and I'py = 1*. Therefore it is clear by
induction that I',; begins with 0°1* and ends with 10°1¢~! when st > 0. The
transition at the comma in (25) is from the last element of OI'(,_;); to the
last element of 1T',(;—1), namely from 010°~'1¢~1 = 010°~111*-2 to 110°1¢72 =
110°101*~2 when t > 2, and this satisfies the revolving-door constraint. The
case t = 1 also checks out. For example, I'33 is given by the columns of

000111 011010 110001 101010
001101 011100 110010 101100
001110 010101 110100 100101 (26)
001011 010110 111000 100110
011001 010011 101001 100011

and I';3 can be found in the first two columns of this array. One more turn
of the door takes the last element into the first. [These properties of T'; were
discovered by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176-180;
a loopless implementation was presented by J. R. Bitner, G. Ehrlich, and E. M.
Reingold, CACM 19 (1976), 517-521.]

When we convert the bit strings asasazazaiag in (26) to the corresponding
index-list forms cscyc;, a striking pattern becomes evident:

210 431 540 531
320 432 541 532
321 420 542 520 (27)
310 421 543 521
430 410 530 510

The first components c3 occur in increasing order; but for each fixed value of c3,
the values of c; occur in decreasing order. And for fixed cs3cy, the values of ¢;
are again increasing. The same is true in general: All combinations c;...cyc;

7.2.1.3 GENERATING ALL COMBINATIONS 9

appear in lexicographic order of

(Ct, —Ct—1y Ct—2y «- -, (_l)t_lcl) (28)

in the revolving-door Gray code I's;. This property follows by induction, because
(25) becomes
Tst = Ty (s+t—1)Ff(t_1) (29)

for st > 0 when we use index-list notation instead of bitstring notation. Conse-
quently the sequence can be generated efficiently by the following algorithm due
to W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163-172]:

Algorithm R (Revolving-door combinations). This algorithm generates all ¢-
combinations ¢; ...czc; of {0,1,...,n — 1} in lexicographic order of the alter-
nating sequence (28), assuming that n > ¢ > 1. Step R3 has two variants,
depending on whether ¢ is even or odd.

R1. [Initialize.] Set ¢; «— j—1fort > j > 1, and ¢;41 + n.
R2. [Visit.] Visit the combination ¢;...cyc;.

R3. [Easy case?] If t is odd: If ¢; + 1 < cg, increase ¢; by 1 and return to R2,
otherwise set j + 2 and go to R4. If ¢ is even: If ¢; > 0, decrease ¢; by 1
and return to R2, otherwise set j + 2 and go to R5.

R4. [Try to decrease c;.] (At this point ¢; = cj—1 +1.) If ¢; > j, set ¢; « ¢j_1,
¢j—1 + j — 2, and return to R2. Otherwise increase j by 1.

R5. [Try to increase c;.| (At this point ¢;—y = j —2.) If ¢; + 1 < ¢j41, set
Cj-1 ¢ ¢j, ¢; ¢ ¢; + 1, and return to R2. Otherwise increase j by 1, and
gotoR4ifj<t. 1|

Exercises 21-25 explore further properties of this interesting sequence. One of
them is a nice companion to Theorem L: The combination cics—j - . . cocy is visited
by Algorithm R after exactly

= ()= () () () -t o

other combinations have been visited. We may call this the representation of N
in the “alternating combinatorial number system” of degree t; one consequence,
for example, is that every positive integer has a unique representation of the
form N = (%) - () + (£) with a > b > ¢ > 0. Algorithm R tells us how to add 1
to N in this system.

Although the strings of (26) and (27) are not in lexicographic order, they
are examples of a more general concept called genlez order, a name coined by
Timothy Walsh. A sequence of strings a;, ..., ay is said to be in genlex order
when all strings with a common prefix occur consecutively. For example, all
3-combinations that begin with 53 appear together in (27).

Genlex order means that the strings can be arranged in a trie structure, as
in Fig. 31 of Section 6.3, but with the children of each node ordered arbitrarily.
When a trie is traversed in any order such that each node is visited just before or
just after its descendants, all nodes with a common prefix — that is, all nodes of

