张国平 周伟军 译

植物生理生态学 Plant Physiological Ecology

[漢] Hans Lambers

[美] F. Stuart Chapin || 警

[荷] Thijs L. Pons

中文版版权归浙江大学出版社独家所有。

浙江省版权局著作权合同登记号: 图字: 11-2003-52 号

Published by Zhejiang University Press, Hangzhou

Chinese simplified characters copyright © 2005 by Zhejiang University Press

Plant Physiological Ecology

Hans Lambers F. Stuart Chapin III Thijs L. Pons

© 1998 Springer-Verlag New York inc.

图书在版编目(CIP)数据

植物生理生态学/(澳)兰伯斯(Lambers, H.),(美)蔡平(Chapin, S.),(荷)庞斯(Pons, T.L.)著;张国平等译. 一杭州: 浙江大学出版社,2005.7

书名原文: Plant Physiological Ecology ISBN 7-308-04222-7

Ⅰ. 植... Ⅱ. ①兰... ②蔡... ③庞... ④张...

Ⅲ. ①植物生理学②植物生态学 N. Q94

中国版本图书馆 CIP 数据核字(2005)第 048582 号

责任编辑 王 镨

出版发行 浙江大学出版社

(杭州浙大路 38 号 邮政编码 310027)

(E-mail: zupress@mail. hz. zj. cn)

(网址: http://www.zjupress.com)

经 销 浙江省新华书店

排 版 杭州大漠照排印刷有限公司

印 刷 德清县第二印刷厂

开 本 889mm×1194mm 1/16

印 张 26

字 数 750 千字

版印次 2005年7月第1版 2006年7月第2次

书 号 ISBN 7-308-04222-7/Q • 050

定 价 60.00 元

浙江省版权局

淅权函[2003]21号

关于《植物生理生态学》一书 出版合同登记的批复

浙江大学出版社:

你社(2003)第23号报告收悉。你社引进《植物生理生态学》一书的出版合同,经审核,同意登记,编发合同登记号为:图字:11-2003-52号。

根据国家版权局国权(1995)1号文件规定,请在图书版权页上注明合同登记号。

此复

浙江省版权局 二〇〇三年五月三十日

主题词:版权 合同 登记 批复

抄送: 国家版权局、局有关处室。

浙江省新闻出版局办公室

2003年5月30日印发

〈植物生理生态学〉翻译组成员名单

组长:张国平 周伟军

组员: 韦 康 王丹英 王美娥 张国庆 顾宏辉

程旺大 殷琛 邵国胜 王丰 汪军妹

译者序

过去的一世纪,特别是第二次世界大战以来,人 类社会取得了前所未有的经济高速发展,总体上人 们的生活水平得到了快速提高,不少国家与地区展 现出一种全新的繁荣景象。但是,与此同时,人口、 粮食、资源、环境等问题日益突出,人口不断扩大,要 求生产更多粮食和其他农产品,要求提供更多的建 筑材料和空间。耕地的过度扩展和集约化化学产品 的大量投入(包括化肥、农药、农膜等)导致环境剧变 或退化,从而影响甚至威胁人类的生活方式乃至生 存。当前,高效利用自然资源、保护人类生存环境和 促进可持续发展已成为时代的强音。在科学上,在 以阐明植物生长发育、物质生产、资源(水、肥等)获 得等基本生命活动的植物生理学和阐明群落内种间 关系与互作以及物种环境适应方式的植物生态学不 断发展与深入的基础上,逐步形成了由以上两门学 科交叉的一门新兴学科——植物生理生态学,它以 **生态学和植物生理学紧密结合的形式阐明植物的基** 本牛理生态过程及其与环境的互作。上世纪90年 代后该学科又迅速汇入了分子生物学的理论与研究 方法,即在宏观拓展的同时在微观上得到了深入,使 植物生理生态学发展到一个新的水平。

也许是由于植物生理生态学是一门快速发展的新兴学科,迄今很少有全面介绍这一领域研究进展的专著问世。尤其在国内,已有不少高等院校陆续为本科生和研究生开设了植物生理生态学课程,校译者也已为研究生讲授这一课程多年,但一直缺乏相应的高质量教材或参考书。两位译者几年前分别在日本和瑞典从事合作研究时接触到由 Hans Lambers 教授等人编写的植物生理生态学(Plant Physiological Ecology),阅读后可谓耳目一新,认识到该书内容新颖、系统,特别是有关植物水分和养分利用的种间及种内差异的生理生态机制、植物对逆

境的分子生理反应和生态适应性、物种间互作的分子机理与生态学意义等内容,均为当前本学科研究前沿和热点。为此,我们在承担的相应课程中引进了该书的内容,收到了很好的教学效果。同时,为了使我国有更多的人从中受益,我们萌发了将其翻译为中文的念头。

本书由三位在植物生理生态学研究领域享有盛 名、分别来自澳大利亚、美国和荷兰的著名学者撰 写,其中 Hans Lambers 博士目前同时兼任着澳大 利亚西澳大学和荷兰乌得勒支(Utrecht)大学的教 授,是国际著名刊物"植物与土壤"的主编,在植物营 养生态学和遗传学上研究成果卓越,其他两位作者 在研究方向上各有特色和专长。正如英国布里斯托 尔(Bristol)大学 David Clarkson 教授在原书序言中 写道:"本书非常适当地以植物从大气中获得碳为切 入口:光合作用无疑是地球上所有生物的基础,已经 有无数杰出的植物科学家尽其毕生精力在这一领域 进行了研究,从而使人们对光合作用的分子生物物 理和生物化学要比其他所有植物生命过程有更多的 了解。同时,不同环境变量对光合作用生理学及其 调节也有很多研究。但是,光合作用发生在一种植 物个体无法控制的环境中,即植物必须对付不同的 温度、雨量、光强、二氧化碳等条件。植物不能改变 这些环境,必须通过其灵活的生理反应减轻这种环 境的不良影响。本书的后面一部分,焦点落在地下 部位:为了改善养分供应,植物可以改变根际环境, 在征集养分中它们从微生物的活动中得到益处。本 书最后,讨论了植物与微生物之间的互作,植物进化 过程中的生化对策,帮助它们与其他生物的竞争与 生存斗争。"由此,我们可以领悟本书的主要内容及 其特色。

尽管在"译作"伊始,我们已意识到这是一项十

分耗费精力的艰难过程,但实际翻译过程中遇到的 困难远远超出了我们的预期。该书涉及的专业跨度 大,新僻词汇多,给我们正确的遭词和表达带来了极 大的困难,不少地方使我们深感力不从心。值得庆 幸的是,我们可以借助本校图书资料丰富和学科与 专业人才齐全的优势,从而减少谬误。但是,由于校 译者水平有限,加之时间仓促,此书中文版译文中肯 定还存在不少问题甚至错误,敬请读者谅解,并衷心 希望批评指正,以便在再版时更正。

参加本书翻译的人员有韦康(缩写、名词解释)、 王丹英(第 2 章)、王美娥(第 2 章)、张国庆(第 2 章)、顾宏辉(第 3、4 章)、程旺大(第 5 章、第 8 章)、 殷琛(第 6 章)、邵国胜(第 7 章)、王丰(第 9 章)、汪 军妹(第 10 章)等,第 1 和 11 章由张国平翻译。全 书由张国平和周伟军校阅。肖玉苹、黄有总、戴飞、 何云、许玲等同学也参与了本书的校订和绘图工作。

本书的校译者十分感谢三位原作者特别是

Hans Lambers 教授对我们开展本项工作的大力支持,他欣然为本中文版作序,多次来函提供勘误材料,并在校译者之一张国平教授访问西澳大学和他在浙江大学访问期间解答有关问题,这些对减少校译错误无疑是很有作用的。校译者感谢斯普林格(Springer)出版社在理解中国专业图书出版特点的基础上,仅收取象征性的版权费授予了我们本书的中文版版权,这是我们的目标得以实现的关键。我们也要感谢浙江大学为本书提供了专项出版基金。浙江大学出版社的王锴博士为本书的编辑付出了大量心血,在校译过程中得到本校常杰教授、陈学新教授、傅承新教授、唐桂礼编审、杜玲玲女士等同仁的帮助,在此一并致谢。

张国平 周伟军 2005年4月12日于杭州华家池

《Plant Physiological Ecology》中文版序

I congratulate Professor Guoping Zhang with the completion of the translation of Plant Physiological Ecology. All three authors of this book were delighted with Professor Zhang's plan to make an abbreviated translation, and we were also very pleased that Springer-Verlag supported his initiative. From my personal experience, I know that the book will be used widely, by students interested in agriculture, horticulture and forestry as well as by those interested in natural ecosystems. China is rapidly increasing its production of food and fibre, to satisfy the demand of its growing population. To do so, a sound understanding of plant functioning in managed systems is essential. China also harbours one of the world's 25 hotspots of biodiversity. To preserve this natural resource, a profound understanding of how this natural system functions is important. This translation should help students to better understand plant functioning in managed and natural systems.

Plant physiological ecology is a discipline of plant science that is rapidly increasing in importance in China, as it is elsewhere in the world. There has been a vast increase in publications by Chinese authors on plant physiological ecology in the international literature. I have made a couple of visits to China in recent years, and lectured at a range of institutions there. I am impressed by the interest in plant physiological ecology, and how fundamental knowledge is being used for a better understanding of practical problems. These problems often relate to agriculture or horticulture. Excellent papers on intercropping and soil sickness have been published by authors based in China. Other problems deal with the effects of increasing pressure on China's natural systems.

In the past few decades, ecophysiologists have accumulated a wealth of information on aboveground plant traits and processes. Therefore, we now have a very good understanding of leaf gas exchange in different environments. Early research concentrated on major differences between C₃ species vs. C₄ and CAM species. In the more recent past, sophisticated portable gas-exchange equipment and stable-isotope analyses have been used to assess leaf photosynthetic performance. This has led to the appreciation of more subtle differences amongst C3 species, e. g., along moisture gradients, in different parts of the canopy, and as dependent on habitats that induce differences in plant nitrogen or phosphorus status. Leaf traits such as turnover, specific leaf area, and the associated anatomy have been studied in comparisons of fast-and slowgrowing species and species from widely different habitats. These traits have also been correlated with gas-exchange characteristics, showing distinct trends amongst species from contrasting habitats. These general trends, e. g., rate of photosynthesis vs leaf nitrogen concentration and RGR with habitat, are now well known. However, equally well known are numerous exceptions, which have hardly been given any attention. These exceptions might tell us at least as much as the general trends. In comparison with our relatively good understanding of the structure and functioning of leaves in contrasting habitats, our understanding of roots is still very limited.

What would be equivalent root traits that would need to be studied to obtain a better understanding of below-ground plant functioning? The belowground counterpart of photosynthetic carbon acquisition strategies are strategies of nutrient acquisition are. These may involve symbiotic partners, e.g., rhizobia (to acquire N) or mycorrhizal fungi(to acquire nutrients that diffuse very slowly in soil, e. g., P). We still have to learn a lot about the significance of different mycorrhizal systems; this knowledge is the below-ground counterpart of what we know about subtle differences in C3 photos ynthesis between species. Alternative strategies for nutrient acquisition depend on the exudation of a range of compounds that enhance the availability of nutrients in the rhizosphere. This strategy is most pronounced in species that make 'proteoid' or 'cluster' roots. The strategy to depend on root exudates appears an alternative to the mycorrhizal strategy, i. e. most species with cluster roots have no or weakly developed mycorrhizal associations. Root traits such as root turnover, specific root length and the associated anatomy are now being studied for fast-and slow-growing species. However, we are still to investigate how these traits relate to nutrient acquisition. Clearly, below-ground components of higher plants need to be studied in far greater details to obtain a better understanding of the functioning of plants in their environment.

Interactions between plants and surrounding organisms

Plants share resources and frequently compete for them. They may compete by using essentially similar, but more effective, mechanisms to acquire the resources (resource competition). Alternatively, they may compete using chemicals that interfere with the neighbour 's growth or metabolism (interference competition or allelopathy). Interference competition is a fact of nature, but many of the

results published in this area can be interpreted in an alternative manner. Of particular interest are the competitive (allelopathic) interactions between mycorrhizal and non-mycorrhizal species. Interactions between mycorrhizal species may be positive, but those between non-mycorrhizal and non-mycorrhizal species are frequently negative. This should warn us against a simplistic interpretation of phosphate fertiliser trials. Phosphate fertilisation may suppress the mycorrhizal symbiosis, and thus reduce the negative effects the mycorrhizal fungus has on the non-mycorrhizal species.

Chemical interactions between plants can also be positive (facilitation). For example, white lupin may mobilise sparingly available phosphate in its rhizosphere, and neighbours may benefit from this. This principle can be exploited in agriculture, e. g., in the intercropping systems in China, where these interactions may increase yields significantly.

Chemical interactions also play a role in the signalling between host plants and their microsymbionts or parasitic plants. Chemical signals are released by the host, and recognised by the microsymbiont, which then releases signals that are recognised by the higher plant. The system has been studied in the greatest detail in the legume-rhizobium system, but it is bound to be equally significant in mycorrhizal systems. In the case of parasitic plants, the signal that is released by the host may be a cue for germination or for haustorium formation. Understanding the signals between host and parasitic plants may help us control the plant parasites, which frequently become pests in Africa and Asia.

Other fascinating chemical interactions between plants and surrounding organisms include the attraction of 'bodyguards' upon attack by herbivores. Once thought to be a curiosity, it is now thought to be fairly common.

Interactions between plants and their neighbours are not invariably chemical, but may involve the phytochrome system. This phytochrome system is used to 'sense' neighbours, and avoid close contact.

Root exudation

Root exudation is significant both as a strategy to mobilise sparingly available nutrients in the rhizosphere, as discussed above, and it is also very important in the process of detoxification of aluminium and lead.

Citrate is frequently a major component of root exudates. However, its effect on phosphate mobilisation, relative to the effect of malate, strongly depends on soil pH. At high pH, malate is rather ineffective, and chickpea and white lupin release very little malate and large amounts of citrate under those conditions. At low soil pH, malate is as effective as citrate, but, containing only 4 carbon atoms as compared with the 6 carbon atoms in citrate, is more efficient. Thus, this response appears to be adaptive. Is this response unique for these two crop species, or is it fairly common? How is this soil component associated with pH'sensed' by the roots? What is the signaltransduction pathway between sensing pH and releasing the appropriate composition of carboxylates? These are clearly challenging developments in this area that is only just opening up. There are also indications that roots sense other soil components and respond to these much in the same way as they respond to soil pH.

Citrate, malate or oxalate are major carboxylates in root exudates that are released upon exposure to aluminium in the rhizosphere by aluminium-resistant genotypes. The exact compound that is released depends on species, but the effect is similar precipitation of aluminium by the exudate carboxylates. There is also evidence that oxalate released by lead-resistant rice genotypes confers resistance to lead in the root environments. Other heavy metals could be detoxified in a similar manner by root exudates, but as yet there is no evidence to support this contention. Exudate release might offer a strategy to engineer plants with greater resistance to heavy metals, if the exudates precipitate these metals. Alternatively,

root exudation might enhance the mobility of heavy metals and allow plants to remove these from the soil more rapidly, in a process generally called phytoremediation.

Plant ecophysiology in the 21st century

More than ever, plant ecophysiology depends on the use of a wide range of 'tools'. These include molecular tools, which, for example, have been used to elucidate the role of the phytochrome system in sensing neighbours. Molecular tools will be vital in elucidating how soil pH and as yet unidentified soil components are sensed. If Arabidopsis thaliana shows the same response as chickpea and white lupin, carboxylate-releasing accessions of A. thaliana might be used to elucidate these fascinating aspects of ecophysiology.

Molecular tools will also be valuable in assessing root exudation in situ, using reporter genes that allow the detection of specific exudates. This will provide us with more detailed information which exudates are released in time and space. Despite the increasing need for molecular tools, we must not forget the other end of the spectrum, that is the plant's ecology. Investigating plants and the natural habitat in which they have evolved for millions of years is vital for our understanding of adaptive traits. For exactly that reason, locations of Western Australia which have not been disturbed by recent glaciations, are of enormous significance for ecophysiologists. These are natural laboratories which offer numerous examples of close associations between plant species that occurred in the same or similar environments for millions of years, and that specific environment. Plant ecophysiologists should use these natural laboratories to learn more about interactions between plants and their natural environments. Thus, they will discover vital traits that might be used in developing crop species that are better able to cope with their managed environment.

What are the key aspects plant ecophysiologists might focus on? Global change remains a popular and relevant area. However, if we need to feed a growing world population, non-renewable resources such as phosphate deserve more attention. In the industrial world, phosphate is not considered a major issue, because of liberal use of fertiliser and import of phosphate in animal feed from developing countries,

Occasionally, phosphate is a pollutant in the industrial world, because of leaching and run-off into rivers and streams. Since most of the ecophysiological research is carried out in rich, industrial countries, research on efficient acquisition and use of phosphate has not received the attention is deserves. Much is to be learned from native plants that naturally grow in phosphate-impoverished soils, and from crop species that require less input from phosphate fertilisers than most, e. g., cereals. The genus Lupinus offers a unique opportunity, in that few species of this genus bear

'cluster' roots which make them superior crop plants in phosphate acquisition. A better understanding of the biology of cluster roots might help us develop other *Lupinus* species with 'cluster' roots, and ultimately crop plants of other genera with these superior traits. The remarkably high sensitivity of species that have evolved on phosphate-impoverished soils to phosphate fertilisation offers another challenge. Understanding the phenomenon of phosphate toxicity in these species might lead to a better understanding of the metabolism and sensing of phosphate in higher plants.

Hans Lambers

										11 11 11	
										••••••	
«P	lan	t Physiolo	gical Ecol	ogy》中文)	饭序 ·	• • • • • • • • • • • • • • • • • • • •		•••••			(1)
第	1 1	€ 假说和	印研究方法	ŧ	· · · · · · · · · · · ·						(1)
	1	生态生理	学的含义								(1)
	2	生态生理	学的根基					······································			(1)
	3	生理生态	学和生物的]分布 …							(2)
	4	植物对环	境反应的时	间尺度 ·		•••••					(3)
	5	推理方法	和实验方法	.						• • • • • • • • • • • • • • • • • • • •	(5)
	6	生态生理	學的新方向	J					,,		(5)
	7	本书的结	·构 ·······								(6)
44	2 á	ᆂᆚᄼ	佐 東								(8)
邪	i	概述・・・	IF/113								(8)
	2	灰火	7.65 台 / 林 / 44	c						• • • • • • • • • • • • • • • • • • • •	(8)
	2	2.1 光台	. 化田的米F		के					• • • • • • • • • • • • • • • • • • • •	(8)
		2. 1. 1	水子的吸水 11F77111111111111111111111111111111111	C)19. 11 HB (C)							(8)
		2. 1. 2	治 分数 化	专的命法							(9)
		2. 1. 3	版 皮 述 中 名	· 由子传递:	和生物的	能量学					(9)
		2. 1. 4	光 合磁循环	F		40 WEY.1					(9)
		2. 1. 5	加萄反应和	n 米 呼 W ·				, :.			(11)
		2 2 ***	か 対 お お は た に の に 。 に る に 。 に 。 に 。 に 。 に 。 に る に 。 に る に 。 に る に る に る に る に る に る に る に る に る に る に る に る に る に 。 に る に 。 に る に る に る に る に る に 。 に る に る に る に る に る に る に る に る に る に る に る に る に る に る に る に る に る に る に 。 に る に 。 に る に る に る に る に る に 。 に る に 。 に 。 に 。 に に 。	。的供应和	雲求						(12)
		2. 2. 1	CO。反应的	1线	1111 - 1 -				• • • • • • • • • • • • • • • • • • • •		(12)
			CO。的供质	7.气孔和	界面层值	传导 ····					(12)
		2, 2, 3	内传导 …								(13)
	3										
		3.1 冠原	是下部光的*	- b性	• • • • • • • • •						(14)
		3.2 阳中	十、阴叶的生	·一 理、生化和	解剖结	构上的	差异 …			***************************************	(14)
		3. 2. 1	阳叶和阴鸣	†的光反应	曲线				· · · · · · · · · · · · · · · · · · ·		(14)
		3, 2, 2	阳叶和阴鸣	†的解剖与	亚显微	结构·				• • • • • • • • • • • • • • • • • • • •	(16)
		3. 2. 3		†的生物化							
		3. 2. 4	阳叶和阴鸣	†的光反应	曲线						
		3, 2, 5	叶绿体适图	月性的环境	信号				••••••		(19)
		3.3 光照	展过强的影响	向							(20)
		3.3.1	叶黄素循环	不中类胡萝	卜意对	光抑制的	的保护				(20)
		3.3.2	不同光强	下叶绿体的	运动	•••••			**********	re da's page par b's concessor	(21)

3.4 对光强变化的动态反应	
3.4.1 光合诱导	
3.4.2 Rubisco 的光激活	
3.4.3 光照后的 CO₂ 同化和光斑的有效利用 ····································	(23)
3.4.4 阳叶和阴叶的代谢库	(24)
3.4.5 光斑对植物碳同化量和生长的影响	(24)
4 光合产物的分配和反馈机制的调节	(25)
4.1 细胞内光合产物的分配	(25)
4.2 反馈机制对光合速率的调节	(26)
4.3 葡萄糖对卡尔文循环的酶基因编码的抑制作用	(27)
4.4 通过库一源关系调节的生态作用	(27)
5 水分供应对光合作用的影响	(27)
5.1 气孔开度的调节	(28)
5.2 水分胁迫对 A - Pi 曲线的影响 ····································	(29)
5.3 与水分利用效率有关的碳同位素鉴别	(30)
5.4 引起 C。植物碳同位素含量变化的其他原因 ····································	(30)
6 土壤养分供应对光合作用的影响	(31)
6.1 米会作用与复的关系	(31)
6.2 N、光和水对光合作用的交互作用 ····································	(32)
6.3 米合作用、N 套套兼和叶片寿命之间的关系 ····································	(32)
7 光合作用和叶片温度	(33)
7.1 高温对光合作用的影响	(34)
7.2 低温对光合作用的影响	(34)
8 十与污染对光会作用的影响	(36)
9 C. 植物	(36)
9.1 引言	(36)
9.2 C. 植物的生物化学和解剖学特征 ····································	(36)
9.2 C. 植物的生物化学和解剖学特征 ····································	(39)
9.4 C. 植物的代谢产物在细胞间和细胞内的运输 ····································	(39)
9.5 C。植物的光合氮利用效率、水分利用效率和耐高温性 ····································	(40)
9.6 C.—C。中间类别	(41)
9.7 C. 植物的进化和分布	(43)
9.8 C. 植物的碳同位素成分 ····································	(44)
10 CAM 植物 ···································	(44)
10.1 引言	(44)
10.2 CAM 植物的生理生化和解剖学特性	(45)
10.3 水分利用效率	(48)
10.4 不完全 CAM 植物和兼性 CAM 植物 ···································	(48)
10.5 CAM 植物种类的分布和进化	(49)
10.6 CAM 植物的碳同位素成分 ····································	(50)
11 水生植物获得光合碳源的特殊机制	(51)
11.1 引言	(51)
11.2 水中 CO₂ 的供应 ···································	(51)
11.3 水生植物对碳酸氢盐的利用	• (52)

		11.4	1 从	沉淀物中	中利用 CO₂ ···································	(52)
		11.	水	生植物的	的景天酸代谢途径(CAM) ····································	(54)
		11.	5 水	生植物间	司、水生和陆生植物间的碳同位素组成差异	(54)
		11.	7 水	生植物双	付碳酸盐沉淀的作用	(54)
	12	2 空	气中	CO ₂ 浓	度增加的效应 ······	(55)
		12.	1 光	合作用邓	对 CO₂ -浓度增高的适应性 ····································	(56)
		12.	2 C(Ე₂ 浓度チ	升高对 C ₃ 、C ₄ 和 CAM 植物的不同效应 ····································	(57)
	13	3 绰	话 语	· · · · · · · · · · · · · · · · · · ·		(57)
结	3 ¥	4 -	115TE 11174	作田	······································	(69)
<i>স</i> ?	1					
	2				:特征	
	2	2. 1			······································	
	,	2. 2			唐磷酸途径和三羧酸(TCA)循环	
		_	. 3. 1		· 竞递链中的复合物 ····································	
		-	. 3. 2		三端氧化酶	
			. 3. 3		抑制剂与解偶联剂	
			. 3. 4		■用的控制 ····································	
		_			三用主要控制点概述	
		2. 5	寫	体线粒体	本和体内线粒体的 ATP 产生	(74)
			. 5. 1		韓化:化学渗透模型	
		2	. 5. 2		ATP 量 ·····	
					一 包素途径与交替途径的电子传递调节 ····································	
			. 6. 1	竞争或	送溢流	(75)
		2	. 6. 2		【化酶的复杂调控	
	3	交	替途		里生态功能	
		3. 1	产	热		(76)
		3. 2	能	否真正测	则定交替途径的活性	(77)
		3.3			F为一种能量溢流 ·······	
		3.4	在	应急情况	7下的交替涂径运行	(78)
		3.5	高	能荷下的	约 NADH 氧化作用 ····································	(78)
		3.6	当	细胞色素	紧途径活性受到抑制时呼吸作用的延续	(79)
	4	环	境条	件对呼吸	及过程的影响	(79)
		4. 1	受	淹、缺 O	2 和无 O2 土壤 ·······	(79)
		4	1. 1. 1		盲氧呼吸的抑制 ····································	
		4	1. 1. 2			
		4	1. 1. 3		5酸化	
		4	l. 1. 4	避免師	央 O₂: 形成通气组织 ····································	
		4. 2		分和水分		
		4. 3	养			
		4. 4				
		4. 5				
		4. 6			5 Al 浓度 ···································	
		4 3	7 CC). 4 E		(86)

4 植物生理生态学

		4.8	植物	病原	本的影	响 …											(87)
	5	呼吸	作用	在植物	物碳平	衡中的	的作用		•••••				•••••			• • • • • • • • • • • • • • • • • • • •	(87)
		5.1	碳平	後 ·	•••••		• • • • • • • •				· • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	(87)
		5. 1	. 1													• • • • • • • • • • • • • • • • • • • •	
		5. 1	. 2														
							- , , , , ,									• • • • • • • • • • • • • • • • • • • •	
		5, 2			呼吸作				•								
		5. 2															
		5. 2															
		5, 2	•													. 5 %	
	6	结															
第	4 j		化	物的也	←距离	运輸	••••••	• • • • • • •	•••••		• • • • • • •	• • • • • • • •		• • • • • • •	•••••	•••••	(104)
	1																
	2	韧皮	部中	的主!	要运输	化合物	勿:为(十么不	是葡萄	精?	•••••		• • • • • • • • •	• • • • • • •	•••••	••••••	(104)
	3	韧皮														•••••	
		3. 1															
		3.2														•••••	
		3.3															
		3.4															
	4	韧皮	老部等	支载与:	植物的	生态が	分布 …		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	i	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	(109)
	5																
	6																
	7	结	语	• • • • • • • •			• • • • • • • • •	•••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	••••••		• • • • • • •		•••••	(110)
盤	5 4		自物	水分	关系 .								• • • • • • •				(113)
710	1																
	•	1.1	a ak⊻	计植物	机能的	作用							• • • • • • • •				(113)
		1. 2	表用	b 作用	恒光合	作用に	不可避	免的结	#果 …				• • • • • • •				(114)
	2	,															
			-														
	Ŭ																
		3. 2															
		3. 3															
		3. 4														• • • • • • • • • • • • • • • • • • • •	
	4	-															
	•	4.1															
		4. 2															
		4. 3			-												
	5		如中的	的水分	法动,							• • • • • • • •					(121)
		5.1															
		5. 2														• • • • • • • • • • • • • • • • • • • •	
		5.3														• • • • • • • • • • • • • • • • • • • •	
			3. 1													• • • • • • • • • • • • • • • • • • • •	
																• • • • • • • • • • • • • • • • • • • •	

5.3.3 气穴和阻塞: 木质部水流的阻断	
5.3.4 阻塞的导管能恢复其功能吗?	
5.3.5 传导与安全之间的权衡	
5.3.6 木质部的传输能力与叶面积	
5.3.7 茎中的水分储存	
5.4 叶片水分和叶片失水	
5.4.1 土壤干旱对叶片导度的影响	
5.4.2 气孔运动和气孔导度的调控	(133)
5.4.3 蒸气压差或蒸腾速率对叶片传导的影响	(134)
5. 4. 4 光照和 CO ₂ 对叶片传导的影响 ····································	(135)
5.4.5 角质层传导和界面层传导	(136)
5.4.6 影响叶温和叶片失水的叶片特征	(136)
5.4.7 气孔调控:碳获得和水分损失的一种妥协	(137)
5.4.8 叶片中的水分储存	
5.5 水生植物	(139)
6 水分利用效率	(139)
7 水分有效性和植物生长	(140)
8 干旱适应性	(141)
8.1 避免脱水: 一年生和干旱落叶植物	(141)
8.2 耐脱水:常绿灌木	(142)
8.3 "回生植物"	(142)
9 冬季水分关系和耐冻性	(144)
10 耐盐性	(144)
11 讨论	(144)
第 6 章 叶片能量收支:辐射与温度效应	(154)
1 植株能量平衡	(154)
1.1 引言	(154)
1.2 能量的收入和支出 ····································	(154)
1.2.1 叶片能量平衡研究的简要回顾 ····································	
1.2.2 太阳短波辐射	
1.2.3 长波辐射	(156)
1.2.4 对流热传导	(157)
1.2.5 蒸发能量交换	(159)
1.2.6 代谢热的产生	(160)
1. 2. 0 1 (8) X(1) 1.	(100)
1.3 能量平衡各项对叶温影响的模型——研究热点总结	(160)
1.3 能量平衡各项对叶温影响的模型——研究热点总结	(160) (161)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 ····································	(160) (161) (161)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 ····································	(160) (161) (161) (161) (161)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 ····································	(160) (161) (161) (161) (161) (162)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 ····································	(160) (161) (161) (161) (161) (162) (164)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 ····································	(160) (161) (161) (161) (161) (162) (164)
1.3 能量平衡各项对叶温影响的模型——研究热点总结 2 辐射和温度对植物的影响 2.1 引言 ····· 2.2 辐射 ···· 2.2.1 强辐射对植物的影响 2.2.2 紫外线的影响 2.3 极端温度的影响	(160) (161) (161) (161) (162) (162) (164) (164)

6 植物生理生态学

2.3.4 冷害和耐冷性	(165))
2.3.5 与耐霜性相关的糖类和蛋白		
2.4 全球变化和未来的作物		
3 气体交换和能量平衡:从叶片水平到冠层水平	(166)
3.1 引言		
3.2 冠层的水分利用		
3.3 冠层 CO ₂ 通量 ···································	(168)
3.4 冠层水分利用效率		
3.5 冠层对小气候的影响:实例研究	(169)
3.6 高水平目标	(170)
第7章 矿质养分	(172	()
1 引言	(172	Ċ
2 养分获取		
2.1 土壤养分		
2.1.1 养分供应速率		
2.1.2 养分向根表运动		
2.2 决定养分获取的根系特性		
2. 2. 1 增加根的吸收表面		
2.2.2 运输蛋白: 离子通道与载体		
2.2.3 吸收动力学的适应与调节	(177	7)
2.2.4 氮的获取	(180)))
2.2.5 磷的获取		
2.2.6 根际化学变化		
2.2.7 根际矿化	(186	3)
2.2.8 养分丰富区域根系的扩展		
2.2.9 磷获取有关参数的敏感性分析		
3 "有毒"或"极端"土壤中养分的获取	(189	, 3)
3.1 酸性土		
3.1.1 铝的毒性		
3.1.2 改善土壤缓解中毒症状		
3.1.3 铝的抗性		
3.2 钙质土壤	(19:	2)
3.3 重金属含量水平高的土壤		
3.3.1 土壤中重金属浓度高的原因		
3.3.2 用植物净化污染水和土壤:植物修复		
3.3.3 重金属对植物的毒害作用		
3.3.4 抗重金属植物		
3.3.5 抗性型和敏感型植物的生物产量		
	(19	6
3.4.1 淡土植物和盐生植物		
3.4.2 根系能量依赖的盐外泌		
3.4.3 木质部能量依赖的盐外泌		
3.4.4 Na ⁺ 从叶片运输到根部和经盐腺体的分泌 ····································		
3.4.5 细胞内盐分的区室化和共溶物的积累	(19	9)
~+ · · · · · · · · · · · · · · · · · · ·		•

		3.5 淹土	
	4	植物养分利用效率	
		4.1 养分浓度的变化	
		4.1.1 组织养分浓度	
		4.1.2 组织养分需求	
		4.2 养分生产力和平均滞留时间	
		4.2.1 养分生产力	
		4.2.2 植物养分的平均滞留时间	
		4.3 植物的养分损失	
		4.3.1 淋洗损失	
		4.3.2 衰老引起的养分损失	(203)
		4.4 生态系统的养分利用率	
	5	结语	(205)
第	8 i	章 生长与分配	(216)
210	1		
	2		(216)
		2.1 整株植物的生长	
		2.1.1 高叶面积比促进植物生长	(216)
		2.1.2 养分浓度高的植物生长是否较快?	
		2.2 细胞的生长	(218)
		2.2.1 细胞分裂和细胞伸长: Lockhart 方程	(218)
		2.2.2 细胞壁酸化作用和钙的去除降低细胞壁刚性	(218)
		2.2.3 分生组织的细胞伸展受细胞壁伸展性而不是受膨压控制	(219)
		2.2.4 屈服临界值和细胞壁屈服系数的物理和生化基础	(220)
		2.2.5 分生组织大小的重要性	(220)
	3	· // // // // // // // // // // // // //	(220)
		3.1 SLA 是与 RGR 变异相关的主要因子 ····································	(221)
		3.2 叶片厚度和叶质密度	
		3.3 与叶质密度相关的解剖学和化学差异	
		3.4 净同化率、光合作用和呼吸作用	(222)
		3.5 RGR 和叶片伸长及叶片出生速率 ·······	(222)
		3.6 RGR 和单位质量活性 ····································	
		3.7 RGR 与植物性状 ····································	· (223)
	4	4 贮藏分配	
		4.1 贮藏的概念	• (223)
		4.2 贮藏物的化学形态	
		4.3 一年生植物的贮藏和再动用	(225)
		4.4 二年生植物的贮藏	
		4.5 多年生植物的贮藏	
		4.6 生长和贮藏的成本:最优化	
	5	5 环境影响	
		5.1 光照对生长的影响	
		5.1.1 阴暗处的生长	
		5.1.2 光周期的影响	· (Z31)

8 植物生理生态学

5. 2	· 温度对生长的影响 ····································	
5	5.2.1 低温对根系功能的影响	(232)
Ę	5.2.2 分配模式的变化	(232)
5. 3	3 土壤水势和盐分对生长的影响	(233)
5	5.3.1 根系识别干燥土壤然后发送信号给叶片吗?	(233)
Ę	5.3.2 ABA 和叶细胞壁硬化	(233)
ξ	5.3.3 对根伸长的影响	
	5.3.4 水分胁迫对生物量分配的假定模式	(234)
5.4	771.0421.24.030000000000000000000000000000000000	
5	5.4.1 根系和叶片之间氮的循环	
į	5.4.2 经木质部到叶片的激素信号	
į	5.4.3 从叶片到根系传输的信号	
:	5.4.4 来自叶片和根系的综合信号	
į	5.4.5 氮供应对叶片解剖学和化学的影响	
	5.4.6 光强对不同叶片中氮的分配	
5.	- I XX II X II	
	5.5.1 对生物量分配的影响: 与 ABA 有关吗? ····································	
!	5.5.2 根长和直径的变化: Lockhart 方程的修正	
5.		(238)
;	5.6.1 乙烯的关键作用	
!	5.6.2 对水分吸收和叶片生长的影响	
!	5.6.3 对不定根形成的影响	
5.		(240)
5.		(241)
6 ≛	5生长速率遗传变异有关的适应性	(242)
6.	·— ·· · · · · · · · · · · · · · · · ·	
6.		
	6.2.1 养分供应受限制条件下的生长	(243)
	6.2.2 遮荫时的生长	
6.	3 种生态优势与高或低的 RGR 值相关吗? ····································	(244)
	6.3.1 各种假说	
	6.3.2 是选择 RGR _{max} 本身,还是选择与 RGR _{max} 相关的性状? ····································	
	6.3.3 评价植物分布需要生态生理学方面的信息	
7 组	E长与分配:关于植物信息的有关信息	(245)
笙9音	生命周期:环境影响和适应性	(257)
	音 ····································	
	中子休眠和萌发 ····································	
2.		
2.		
2.		
2.	·	
2.		
2.		
2.		