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1. Automating Science
David Waltz and Bruce G. Buchanan

A=

AXMBHUBENERDEHE, BT Kk
RSLBINET BaeRZ '3)\11‘]&?%1%5%6’\]ﬂ“*@]#ﬁ?&']&*o #EJ’E%XHGEEEMK
MENARIREERE, SENEZRITSME 7N, Kk, ELHNEHURRNER
MAEAMNERT, ELMAAMNEFMEFNEFNTF

The idea of automating aspects of scientific activity dates back to the roots of computer science, if not
to Francis Bacon. Some of the earliest programs automated the processes of creating ballistic tables, crack-
ing cyphers, collecting laboratory data, etc., by carrying out a set of instructions from start to finish. Start-
ing with DENDRAL in the 1960s, artificial intelligence programs such as Prospector, Bacon, and Fahren-
heit automated some of the planning, analysis, and discovery portions of the scientific enterprise. However,
most of these programs were still designed to run a calculation to completion, produce an answer, and then
stop. They did not fully “close the loop” in the sense of examining the results of their actions, deciding
what to try next, potentially cycling forever.

Two reports on pages 85 and 81 of this issue push the boundaries of automatic scientific experimenta-
tion and discovery. King et al. describe a robotic system for running biological experiments, evaluating
their results, and deciding what experiments to try next. Schmidt and Lipson describe their work on dis-
covering compact equations that characterize complex nonlinear dynamical systems, derived from visual
observation of such systems. As these reports show, it is possible for one computer program to step through
the activities needed to conduct a continuously looping procedure that starts with a question, carries out
experiments to answer the question, evaluates the results, and reformulates new questions.

Semiautomated. Scientists at Stanford’s Instrumentation Research Laboratory (circa 1970) linked a gas
chromatograph and high—resolution mass spectrometer to computers to automate studies of biological fluids,
meteorites, and other materials. Stanford’s DENDRAL Project experimented with automated interpretation
of the data and experiment planning to specify nuclear magnetic resonance or infrared data that would re-
solve ambiguities in the mass spectral data.

CREDIT: ROBERT K. LINDSAY

The main goals of automation in science have been to increase productivity by increasing efficiency
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(e.g., with rapid throughput), to improve quality (e.g., by reducing error), and to cope with scale, allowing
scientific treatment of topics that were previously impossible to address. Tycho Brahe spent a lifetime
recording observations that allowed Johannes Kepler to formulate Kepler's laws of planetary motion; today,
computer—controlled data collection is commonplace and necessary for both experimental and observational
science. Automating many activities beyond data collection offers even more benefits.

In the near term, a useful metaphor is to consider computers as intelligent assistants. Some assistants gath-
er data and attend to such tasks as noise filtering, data smoothing, outlier rejection, and data storage. Other
assistants are specialists at statistical analysis, still others at bench work. This metaphor has driven many
research projects over the past several decades and has led to many of the most successful applications of
computers.

An early articulation of this metaphor is Joshua Lederberg’s effort at Stanford University School of
Medicine to develop an automated biomedical laboratory to examine the soil of Mars for traces of life, as
part of the 1975 Viking mission deployed by the U.S. National Aeronautics and Space Administration. The
robot assistant Lederberg designed, with engineer Elliott Levinthal, consisted of a conveyor belt that
scooped up samples of Martian soil and deposited them within a computer—controlled mass spectrometer.
Each soil sample was bombarded with electrons, producing a fragmentation pattern that sorted the charged
particles (ions) according to their mass. This pattern was transmitted to Earth, where scientists could ana-
lyze it for evidence of organic compounds and microbial life. In addition, part of Lederberg’s vision for this
instrumentation was also to close the loop by performing the analysis onboard the spacecraft to inform a
next round of experiments without waiting for Earth—based instructions. This was, in part, the motivation
for the DENDRAL project at Stanford in which an intelligent assistant hypothesized the molecular structure
of organic molecules on the basis of mass spectrometry data (see the figure).

Intelligent assistants are currently numerous and well integrated into the activities of science and in-
dustry. In the longer term, however, new kinds of computer programs are needed to cope with the sheer
volume of data that can be collected automatically and with the volume of relevant information available in
the literature.

Closing the loop from experiment design and data collection to hypothesis formation and revision, and
from there to new experiments, will be one important way to cope with the volume of data. A new wave of
programs will test the efficacy of using computers in closed—loop fashion and will explore the questions of
which activities can be automated, and which ones we would even want to automate. Even for the relatively
straightforward task of data collection, there are myriad questions to answer before streaming data from a
laboratory instrument into a computer, including why particular data are being collected, which variables
should be measured, and which instrument will measure them. If no such instrument exists, can it be de-
signed and built?

Beyond coping with the volume of data, however, computers need to be called into service to cope
with the volume of information and background knowledge relevant to any scientific question. Search en-
gines and automated libraries will return more articles in response to a query than anyone has time to read.

(For example, Google returns about 200,000 hits for the phrase "laboratory automation" and 10 million hits
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for the pair of terms “science” + “automation”.) Programs that have the intelligence to read and interpret
the online information for us will contribute to the next level of closing the loop. This is already an active
area of computer science research.

For any such program to select the most cost—effective and informative hypotheses, prune hypotheses
that cannot be realized experimentally, avoid repeating unsuccessful experiments that have already been
tried by others, etc., it must include a rich model of the entire process of the loop, as well as knowledge of
the specific scientific area being automated. This will increasingly involve a substantial modeling effort, as
is already required for planning and interpreting experiments in systems biology or weather and climate.

For the foreseeable future, the prospect of using automated systems as assistants holds vast promise as
these assistants are becoming not only faster but much broader in their capabilities—more knowledgeable,
more creative, and more self-reflective. Human—machine partnering systems that match the tasks to what
each partner does best can potentially increase the rate of scientific progress dramatically, in the process

revolutionizing the practice of science and changing what scientists need to know.

New words:

automate
date back to
ballistic
cypher
instruction
artificial intelligence
close the loop
enterprise
boundary
robotic
compact
equation
nonlinear
dynamical

derive from

continuously looping procedure

semi—automated
chromatograph n.
high—resolution
meteorite
magnetic
resonance

ambiguity

v. () A 311k
SEWAE] - e TR G
adj. JZHTI0: B (%) 10 85 1k i o 3 11
n. &

n. 54, Ui H

NTH g

S G, 45 1R A 26

n. Ak, Flk

n. SR A SRS

n. Hlas AR

adj. BB

n. SR

adj. AELMEM

adj. 31171

EIE R A

TG BRAE B i
adj. *F A3, E A SRy
[ENERI T I

n. [

adj. A REPER)

n Ak [EE ShE

n. G AN
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spectral adj. ik
productivity n. AR AR )
efficiency n. A%
commonplace n. i I 5
prospector n. WHRFE R
bacon n. MR
Fahrenheit n. R bR

semiautomatic adj.

spectrometer n. ﬁl\ﬁlﬁﬂ“, 7364
planetary adj. AT A2
metaphor n. WG, i
filtering n. 1 I8

storage n. fitt 77

specialist n. L%

bench work T AE
application n. SRR A FH &
articulation n. YiIE, 2

scoop vt 5,

deposit v. L, A R
electron n.HL ¥

conveyor n AL %

bombard n. filf 4
fragmentation n. 7r %L I
microbial adj. TRV, AT 1Y
instrumentation n. R

motivation n. 3101, 3 )
hypothesize v. B e J5
molecular adj. 7711y

efficacy n. W%, BERK
myriad n. 2, LE
relevant adj. 5. FHEHY
substantial adj. B KM, A48
prospect n. Fij & ,Eﬁﬁ

A AL

Explanations to key sentences:

1. However, most of these programs were still designed to run a calculation to completion, produce an
answer, and then stop. They did not fully “close the loop” in the sense of examining the results of their

actions, deciding what to try next, potentially cycling forever.



Automating Science | 5

SR, X Be R e vp R 2 BT AR R RETH Bk SE iy, & — D R 2 SR sk 10 MR s 53 285
B RV ENIE A 78 25 IRIRER N0 T — BT A 280 HI b A T RE 2 — BRI T %

2. As these reports show, it is possible for one computer program to step through the activities needed
to conduct a continuously looping procedure that starts with a question, carries out experiments to answer
the question, evaluates the results, and reformulates new questions.

X SBE A GE B A TS LR RE S UE AT 0 IRAAER (48 &, 4 1 — S TR T Je 3o 6 ok 1 i1 ) 3T ) e o
INE VA R) R 75 B i 4R BT A TR

3. Schmidt and Lipson describe their work on discovering compact equations that characterize com-
plex nonlinear dynamical systems, derived from visual observation of such systems.

it 285 8 R AR A I T TR A R I R Ry R AU 3 AR R T i LR TS B B9 R R
BARIRMHAELR S T RS,

4. In the near term, a useful metaphor is to consider computers as intelligent assistants. Some assis-
tants gather data and attend to such tasks as noise filtering, data smoothing, outlier rejection, and data
storage.

TESLII TSR AT Ee i A RO BE B T A7 26 B T RS YOS Bt , O IRA T i 4 5 s 0
WOl 5w HERR DL R B A AT 55

5. In the longer term, however, new kinds of computer programs are needed to cope with the sheer
volume of data that can be collected automatically and with the volume of relevant information available in
the literature.

IRIG KO A7 R AR, N AT AT 37 B TSR AU e o I Xk B sl AT 38 ) O 8l 1 it A A B S
A it bl A5 2 A AR DGR B9 AR AR AR 55

Questions;
1. When did automating science come into being?
2. What are the goals of automating science?

3. What is the prospect of using automated systems as assistants?
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2. Coding and Computing Join Forces
Bernard Chazelle

RNEHE
ARBERANEAREHBENRER EN—MPZK, AW, BERAMNITENEK
ANZEEXEEMTEBSEEZHENMXEYRINBAMNNETE, KXET Bob
Alice ZEFTR KA BIM R PARBRAMITENKANE S E B AMNEENZ W,

Unlike vinyl recordings of yore, today’s CDs and DVDs are impervious to the feral assaults of even the
most determined toddler. For this triumph of civilization over savagery, we owe thanks to coding theory, one
of the crown jewels of the digital era. Since Claude Shannon’s pioneering work in the mid-20th century, er-
ror—correcting codes are found in all manner of communication devices—so much so, in fact, that by the
1990s coding theorists began to wonder if their brightest days had not passed. However, recent developments
highlight a remarkable confluence of coding and computing, which may herald the shape of things to come.

Imagine Bob communicating with Alice the 21st—century way, text messaging. Complying with her re-
quest, Bob texted Alice his age: 48. But one digit was garbled, and 28 is what she got. It might have been
wise of Bob to add at least one redundant symbol so she could spot the corruption of any single digit,
sparing him much grief. For example, Bob could take the sum of the digits modulo 10 [i.e., the remainder
of (4 + 8) =12 divided by 10, which equals 2]. Adding the “2” gives the new message “482”and Alice
could detect the error by doing the same calculation. In fact, by tagging on more symbols to his message,
Bob could have enabled his friend to recover it in the presence of one or more garbled digits.

If Alice is to have any chance of restoring Bob’s message if corrupted by e errors, Bob would need to
inject at least 2e redundant symbols. Courtesy of so—called Reed—Solomon codes, this is sufficient. On the
downside, it requires complex computations. Yet the added complication has not stopped these codes from

becoming the world’s most popular.

Safe transit. An example of list decoding. Additional

information(“xyz”) is appended to a message (“hello”) sent

through a noisy channel, enabling the receiver to check the

message’s accuracy. The garbled message is compared a-

gainst a list of all possible encoded messages bearing close similarity to the one received (“jelloxhz”).

CREDIT: P. HUEY/SCIENCE
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If the message Alice receives differs from the one Bob sent in more than e places, the decoding may
not be unique. Back at the dawn of coding theory, Elias observed that such ambiguity is unlikely and saw
in this an opportunity. Why not let Alice set a parameter E > e of her choice and reconstruct a list of all
the messages Bob might have written that could have produced the received message in the presence of up
to E errors? If the transmission noise stays within this bound, obviously Alice’s list will include his mes-
sage and it will just be a matter of picking it out from the crowd. To do that, she might choose the message
whose encoding matches the received message most closely; or her preference might go to the message she
deems most likely to be Bob’s.

The success of “list decoding,” as Elias’s suggestion is called, hinges on the shortness of the list (as
a function of E) and the ease of collecting it. In two breakthrough papers, Sudan and Guruswami and Su-
dan showed how to list-decode Reed—Solomon codes efficiently. And here the word “efficiently” is every-
thing, for decoding is trivial when time is not an issue. Sudan and Guruswami’s key insight was to trade
single—variable polynomials, the natural habitat of Reed—Solomon, for the two—variable kind. This then led
to a series of improvements by Parvaresh and Vardy and Guruswami and Rudra.

What were Sudan and Guruswami, two theoretical computer scientists, doing on the stomping grounds
of coding theorists? List decoding can function as a tool for changing one computational problem into an-
other. Suppose that I compose a message that enumerates the solutions of a given problem for all possible
inputs of a certain length. With list decoding, my message can be recovered from its encoded version even
if 99% of its information has been destroyed. Until the work of these researchers, a message more than
50% garbled could not be recovered.

Thinking now of the encoded message as another problem’s “solution sheet,” we conclude that even
an algorithm so bad that it solves the new “problem” erroneously 99% of the time can be used to recover
the message correctly, and hence solve the original problem, all of the time. Conversely, a problem known
to be hard on just a few inputs can be transformed into one that is hard on nearly all of them. Strange as it
may seem, cryptographers crave such problems because hard problems can be used to create difficult—to—
break encryption.

In some cases, Alice may need to recover, say, the 217th bit of the message Bob intended without
having to read all of the message she received. For this we turn to "locally decodable" codes and, specifi-
cally, to a remarkable recent result of Yekhanin: Bob’s message can be encoded so that, should a small e-
nough fraction of its symbols die in transit, Alice would still be able, with high probability, to recover the
original bit anywhere in the message she chooses. The surprise: She can do it by picking at random a mere
three bits of the received message and combining them the right way.

The randomness of the three single—bit lookups makes locally decodable codes ideally suited for pri-
vate information retrieval. The concept was introduced by Chor et al. to allow users of a database to make
queries without divulging what they are. Yekhanin’s scheme would keep the anonymity of a query by
breaking it down into three subqueries and passing on each one to a separate copy of the database. Indi-
vidually, each subquery would look random and therefore unrelated to the parent query.

Computing theorists have been borrowing from coding theory for decades. Recently they have begun to
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return the favor. This symbiotic relationship, it is safe to predict, is far from having run its course. The
quest for a practical solution to private information retrieval is still wide open. How to turn the beautiful

mathematics of local decoding into working privacy tools is one of the main challenges ahead.

New words:

vinyl n. (1) 253, 205 3

yore n. (PO)AEH,H IS

impervious adj. W E A Z 5L

feral adj. BFA 09, R YR Y

assault n. ity Bty

toddler n. W) 7E B %1

savagery n. ¥FPE BB AT

confluence n. L&

herald vt. T, #is

comply vi. WA 4K

garble vt. WrEs O IR VA

redundant adj. LZH, 2RI

digit n. B 8L

courtesy adj. FL3 , Wi

sufficient adj. U, 7011

decode vt. PE(RY), fif(f)

append vt. BREA0 s 8 s (7 S 5 T ) B 3 b
accuracy n. fFEEE RS

encode vt. BT RENIE S, - i
ambiguity n. R AT A R S AR AT A O R T
parameter n. i, S8

transmission n. feik e 1Lk

breakthrough n. M, EE R

trivial n. ANEEN, B, RHOR LB Y
insight n. %7

polynomial adj. 250, 2 F L B LN 7 44
stomp n. Eﬁ‘cﬂ%ﬂ;ﬁﬁé,ﬁ% Eﬁ,iﬁfg

enumerate vt. ¥ 'J}d\g , *&ﬁ‘ﬁ

algorithm n. Bk B AR
erroneously adv. IR ML, N IE

conversely adv. FHHE , [ K 1
cryptographer n. PEEH

at random AT T B
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anonymity n. X ATV
encryption n. JIVE; o
subquery n. § A5

retrieval adj. BHER R
query n. [B)@, 5BE ], i h]
symbiotic adj. LRy

Explanations to key sentences:

1. Unlike vinyl recordings of yore, today’s CDs and DVDs are impervious to the feral assaults of even
the most determined toddler. For this triumph of civilization over savagery, we owe thanks to coding theory,
one of the crown jewels of the digital era.

5 DM 20 S BREA [R] DA 38 1) -7 0 3 90 20l 5419 CD I DVD A2 AT 5
FEATHE 3% — SCH A8 St T D T G A B8 B R B R T b i — U Bk

2. Back at the dawn of coding theory, Elias observed that such ambiguity is unlikely and saw in this
an opportunity.

T 2 1 B T A0 B DT A R e 1o S A HH O A S R AN TRy OF B R 2
THLE,

3. The randomness of the three single—bit lookups makes locally decodable codes ideally suited for
private information retrieval.

X A7 A 4R AR B BEALIE (75 A0 AN B 2R BRAR A9 1 L 1 5 ¥ B4 A 1 i 1

4. Strange as it may seem, cryptographers crave such problems because hard problems can be used to
create difficult—to—break encryption.

A N AT R VR 4 A 2 T S 30 B SO ) ) R DAL Sy TR F T AT A 1 0 P AR e e Al e 1) o
L

Questions:
1. What character s do today’s CDs and DVDs have, compared with vinyl recordings of yore?
2. What does “the 21st—century way” mean in the second paragraph?

3. What if the message Alice receives differs from the one Bob sent in more than e places?
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3. Creating a Science of the Web
Tim Berners—Lee Wendy Hall, James Hendler, Nigel Shadbolt,
Daniel J. Weitzner

BEEMAERANETRERNR EENEREZHENTTR, Af, M5
KRR E LN BEETREAFHBTHNMNERLTH KXHHRT
UE-IMNEERTREMROLEN,

op

Since its inception, the World Wide Web has changed the ways scientists communicate, collaborate,
and educate. There is, however, a growing realization among many researchers that a clear research agenda
aimed at understanding the current, evolving, and potential Web is needed. If we want to model the Web;
if we want to understand the architectural principles that have provided for its growth; and if we want to be
sure that it supports the basic social values of trustworthiness, privacy, and respect for social boundaries,
then we must chart out a research agenda that targets the Web as a primary focus of attention.

When we discuss an agenda for a science of the Web, we use the term “science” in two ways. Physical
and biological science analyzes the natural world, and tries to find microscopic laws that, extrapolated to
the macroscopic realm, would generate the behavior observed. Computer science, by contrast, though partly
analytic, is principally synthetic: It is concerned with the construction of new languages and algorithms in
order to produce novel desired computer behaviors. Web science is a combination of these two features.
The Web is an engineered space created through formally specified languages and protocols. However, be -
cause humans are the creators of Web pages and links between them, their interactions form emergent pat-
terns in the Web at a macroscopic scale. These human interactions are, in turn, governed by social con-
ventions and laws. Web science, therefore, must be inherently interdisciplinary; its goal is to both under-
stand the growth of the Web and to create approaches that allow new powerful and more beneficial patterns
to occur.

Unfortunately, such a research area does not yet exist in a coherent form. Within computer science,
Web —related research has largely focused on information —retrieval algorithms and on algorithms for the
routing of information through the underlying Internet. Outside of computing, researchers grow ever more
dependent on the Web; but they have no coherent agenda for exploring the emerging trends on the Web,
nor are they fully engaged with the emerging Web research community to more specifically focus on pro-

viding for scientists” needs.
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Leading Web researchers discussed the scientific and engineering problems that form the core of Web sci-
ence at a workshop of the British Computer Society in London in September 2005. The participants con-
sidered emerging trends on the Web and debated the specific types of research needed to exploit the op-
portunities as new media types, data sources, and knowledge bases become “Webized,” as Web access be-
comes increasingly mobile and ubiquitous, and as the need increases for privacy guarantees and control of
information on the Web.

The workshop covered a wide range of technical and legal topics. For example, there has been re-
search done on the structure and topology of the Web and the laws of connectivity and scaling to which it
appears to conform. This work leads some to argue that the development of the Web has followed an evo-
lutionary path, suggesting a view of the Web in ecological terms. These analyses also showed the Web to
have scale—free and small-world networking structures, areas that have largely been studied by physicists

and mathematicians using the tools of complex dynamical systems analysis.

Pt e Y The Web yesterday and today. (Left) The World

b e L T

Wide Web circa 1990 consisted primarily of text con-

By * Sty ¢ by ¢ S——

= — l ' tent expressed in the Hypertext Markup Language
(HTML), :

exchanged via the hypertext transfer protocol

- e 11 300 (HTTP), and viewed with a simple browser pointing to a

= - Universal Resource Locator (URL). (Right) Users of the
Web now have a variety of top—level tools to access richer content including scalable vector graphics,
the Semantic Web, multimodal devices (e.g., voice browsers), and service descriptions. These are ex-
pressed in extended markup language (XML), exchanged by newer protocols [e.g., HTTP 1.1 and
SOAP (simple object access protocol)] and are addressed by uniform resource identifier (URI)
schemes.
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The need for better mathematical modeling of the Web is clear. Take the simple problem of finding an
authoritative page on a given topic. Conventional information-retrieval techniques are insufficient at the
scale of the Web. However, it turns out that human topics of conversation on the Web can be analyzed by
looking at a matrix of links. The mathematics of information retrieval and structure—based search will cer-
tainly continue to be a fertile area of research as the Web itself grows. However, approaches to developing
a mathematical framework for modeling the Web vary widely, and any substantive impact will, again, re-
quire a new approach. The process—oriented methodologies of the formal systems community, the symbolic
modeling methodologies of the artificial intelligence and semantics researchers, and the mathematical
methods used in network analyses are all relevant, but no current mathematical model can unify all of
these.

One particular ongoing extension of the Web is in the direction of moving from text documents to data

resources (see the figure). In the Web of human-readable documents, natural-language processing tech-



