
我们身边的物理

目 录

自行车骑快了为什么费力	(1)
饭菜扑鼻香	· (4)
香脆的爆米花	(6)
暄松的馒头	· (7)
多孔的冻豆腐	(8)
吃鸡蛋有诀窍	(10)
时装的颜色	(12)
奇妙的服装图案	(14)
怎样使服装挺括	(17)
雨衣上的学问	(19)
让鸡蛋站起来	(21)
旋转的乒乓球	(23)
为什么 1980 年迟了一秒钟	(25)
"爬云梯"的梯子短一些是否更安全	(27)
开水倒在地上为什么发出低沉的"扑扑"声	(29)
清蒸鸡与热学知识	(31)
封闭式静脉输液中的物理知识	(32)
人民大会堂的声学构造	(34)

看杂技——走钢丝与椅子顶	(35)
声音会"跳"吗	(37)
美丽的压花玻璃	(39)
暖气片装在哪里好?	(41)
巧妙的"水浴"	(43)
钢笔套上的小洞	(44)
巧割啤酒瓶	(45)
生活离不开阳光	(47)
烹饪之神——微波炉	(49)
家用热水器	(51)
自动调温电熨斗	(53)
清洁能手——吸尘器	(55)
自然风模拟电扇	(56)
电饭煲——安全又方便	(58)
家庭好帮手——洗衣机	(60)
食物冷藏——电冰箱	(63)
敲瓷碗	(65)
肌肉的轻声细语	(67)
听鱼儿唱歌	(68)
自行车"身上"的力学知识	(70)
投铅球为什么要滑步	(72)
电灯泡为什么呈梨形?	(73)
人怎样才能离地	(74)
冰海沉船的启示	(75)

夜半钟声到客船——谈声音和波的传播	• (79)
万有引力和人造卫星	· (87)
风与桥	• (93)
伐木的学问	• (99)
雷鸣与闪电	(103)
光污染	(123)
微波食品会导致食物分子异变	(125)
物理里的长生不老	(128)
物理里的时光倒流	(129)
神奇的高速世界	(131)
质量亏损是怎么回事	(133)
潮汐产生的原因	(135)
多米诺骨牌效应	(137)
铅球出手的角度应该是多少	(139)
为什么用湿布抹冰箱的冰格会被粘住?	(140)
神奇的磁化水	(141)
为什么罐装的自动喷剂喷了一会罐身会变凉	(143)
"热得快"的奥秘······	(144)
怎样把开水冷却	(145)
照明节电	(147)
沙雕艺术中的物理学	(149)
视网膜前面的血细胞引起的幻觉	(151)

自行车骑快了为什么费力

自行车骑快了,当然费力,这是人人都体会到的。可是细想想,不合理啊!自行车前进时的阻力不就是车轮与地面的摩擦力吗?只要驱动力(或说牵引力)等于摩擦力,自行车就会匀速运动啊!这是学过初中物理的人都明白的。那么,车轮与地面的摩擦力和速度有关系吗?显然无关。因为物理学研究的结论是滑动摩擦只与接触面材料性质、粗糙程度和正压力有关,没说与速度有关。也就是速度无论快慢,摩擦力并没改变。当然,车轮与地面的摩擦不仅是滑动摩擦,还有静摩擦和滚动摩擦,但想来与速度也没有多大关系。

那么我们就有了提高车速,节省体力的好方法了。只要 条件允许,一上车就使劲蹬,让车速尽量地快,反正骑快车和 慢车克服的阻力是一样的,快骑早点到嘛。

但这个合乎逻辑,合乎科学的推理好像和我们实际的感觉并不一致。慢骑就是省力,而骑快车每蹬一下都很费力。 是科学道理出了毛病还是我们的两条腿有毛病?都不是,是 大脑出了毛病,分析问题的方法有毛病。

我们忽略了空气的阻力。这个因素到底能不能忽略?影响 小就忽略,影响大就不能忽略。空气阻力和地面摩擦阻力不同, 不是一成不变的,速度低时阻力很小可以忽略,速度高时,就会变 得很大,就不能忽略了,而且会成为影响速度的主要因素。

原来流体的阻力有它的规律,气体和流体对运动物体的

阻力是随速度变化的,速度越高,阻力越大。阻力和速度不是成正比,当气体是与物体某一个面相摩擦时,阻力与速度平方成正比;当气体与物体的各个面都摩擦时,阻力与速度的 6 次方成正比。显然,当自行车的速度成为原来的二倍的时候,空气的阻力增大到原来的 64 倍,速度变为原来的 3 倍时,空气阻力变为原来的 729 倍。所以自行车运动员要把成绩再提高一点都是十分困难的。这已经不是体育的问题,而是物理的问题了。运动员要调整骑车的姿态,减小迎风面积;运动员要穿紧身的高弹的服装,尽可能地减小阻力;要戴上流线型的头盔。传统的自行车的车圈是靠辐条来紧固的,五十多根辐条在空气中高速切割,凭空增添了多少阻力啊!怎么办,去掉所有的车条,换成一块圆板,这样增大了重量却减小了切割空气的阻力,可能也合算。

学过物理学的人都知道,自由下落的物体它的速度越来越快,每一秒比前一秒速度增大10倍,一个人不张开降落伞,从2000米高空落到地面上只需20秒,落地时的速度高达2000米每秒。就如同一发炮弹打在地上,太危险了。

然而,事实上,由于空气阻力,自由落体下落速度是要大打折扣的。假设物体 A 和 B 从不同高度落下,如果 A 的初位置更高,那么达到同一高度时,A 的速度就要比 B 的速度大。但是它们在某一时刻的速度只是与它们下落的高度的平方根成正比。而它们受到的阻力是与它们的速度的 6 次方成正比,也就是说 A 比 B 的速度快一些,但它遇到的阻力比 B 要大数十倍乃至上百倍,它的速度自然就会慢下来,所以,跳伞运动员不张伞自由下落的速度是每秒 50 米,把身体四肢张开,阻力增大,速度就会减慢。这样花样跳伞运动员才可能调

整位置,在不张伞的情况下,后跳的跟上先跳下飞机的,编成美丽的队形。

如果张开降落伞,下降速度就慢得多了,落地速度只有每秒6米左右。

饭菜扑鼻香

在厨房里做饭炒菜,我们在屋外也能闻到饭菜的香味。 更有意思的是,有时候锅里的油才烧热,厨房外面的人就闻到 了油香。

香味是怎么被人闻到的呢?因为在烹调的过程中,饭菜的分子有一部分被蒸发到空气中,并且渐渐地向四面八方运动,当它们钻进我们的鼻孔时,我们就闻到香味了。这个过程叫做扩散现象。正是气体的扩散作用帮助人们闻到了各种气味。

气体分子很小很小,我们的眼睛直接看不见它们。但是,这些分子的运动是能够间接地观察到的。在太阳光底下,我们可以看到许多尘埃在空气中飘来飘去,上下飞舞,就是受运动着的气体分子碰撞的结果。气体分子的运动是无规则的,互相之间不断地碰撞,不断地改变运动的方向。因为气体分子之间距离比较大,互相撞碰的机会少,所以它们很容易离散开来。有些气体的分子运动得很快,拿氢气来说,它的分子跑得比子弹头的速度还要快上几倍呢。正是这个缘故,气体物质的体积,如果不受外界的约束,就会不断膨胀扩大,扩散开来。

扩散现象不单气体里有,液体里也有。做汤的时候,滴进几滴酱油,即使不搅拌,整个汤里也会逐渐均匀地染上酱油的 色泽,并富有酱油的美味。这就是酱油在汤里扩散的结果。 固体之间也有扩散现象。有人曾经做过这样的实验:把一块铅片和一块金片,分别磨光,压在一起,在室温下(20℃)放置五年,金片和铅片便连在一块,它们互相混合的深度约一厘米。我们知道,在室温下,金和铅是不会熔解的,但是它们的接触面竟生成了一层均匀的铅金合金,这就是扩散作用在固体中玩的把戏。

扩散现象生动地证明,无论是那一种形态的物质,它们的分子无时无刻不在运动,当它们互相接触的时候,彼此就要扩散到对方当中去。随着温度的升高,分子无规则运动的速度增大,扩散也加快。

香脆的爆米花

"砰!"随着一声巨响,爆米花的香气便飘散开来。爆米花个大粒圆,酥脆芳香,是很受小朋友欢迎的一种膨体食品。大米经过爆米机一加工,体积陡然胀大好多倍,难怪人们风趣地把爆米机称作"粮食扩大器"哩!

那么,米粒是怎样被扩大的呢?

我们知道,密封在容器中的气体,都有一个特别的脾气:温度增高,压强就增大。给爆米机加热的时候,密封在罐里的空气的压强逐渐增大;同时,装在里面的大米逐渐被加热,贮存在米里的水分也逐渐蒸发出来,聚积在铁罐内。罐的温度不断升高,罐内的气压越来越大,这种高压阻止米中水分继续蒸发,使残存在米中的水分也逐渐升温升压,一个个米粒像憋足了气的小气球,只因为受到罐内气压的约束,它们才不能爆开。当罐内气压升高到2-3个大气压的时候(这从气压表上可以看出),便停止加热。这时,爆米花的师傅拿一条长布袋套在爆米机的口上,然后打开盖子。说时迟,那时快,在一声巨响中,大米喷到布袋里了。高温高压的米粒突然进入气压较低的环境中,憋在米粒中的高温高压水分,失去了约束力,便急骤膨胀,使米粒迅速胀大,变成了爆米花。

透过爆米花,使我们看到了"高温高压"的巨大力量。节日的焰火、鞭炮,工地上的爆破,工厂里的蒸汽锤,大力士蒸汽火车头……,它们那种有声有色的表演,都是"高温高压"导演出来的。随着科学技术的发展,它已成为生产上的强大动力。

暄松的馒头

馒头,是我国人民的主要食品之一。

制作馒头的关键是发酵。酵母菌可以使面团的淀粉发生化学变化,生成糖、醇和酸等,并且放出二氧化碳气。但是,加热方法如果不适当,比如直接放在锅上烙,由于受热不均匀,只能变成皮硬内软的"烤饼";要想得到松暄的馒头,必须请高温蒸汽来帮忙。当人们把揉好的生馒头放进蒸笼以后,高温蒸汽很快把馒头包围起来,从四周给馒头均匀地加热。馒头里面的二氧化碳气受热膨胀,可是又不容易冒出来,只能在里面钻来钻去,于是便胀出许许多多小空泡,使馒头又松又暄。如果在面里放些糖,发酵充分,蒸汽温度高,供汽又猛,就可以蒸出表面开裂的"开花"馒头。这样的馒头,富有弹性,吃起来香甜可口。

在蒸馒头的过程中,我们是用高温水蒸气作为介质来给馒头加热的。在日常生活中,利用介质加热的例子很多,例如做饭炒菜要加水,炒板栗、花生和豆子要用细砂。水和细砂也是常用的传热介质。

气体受热膨胀也往往会给人们带来麻烦。炎热的夏天, 汽车轮胎和自行车轮胎有时会"放炮",就是因为胎内气体受 热膨胀,压强增大,大到一定程度,车胎就被胀破了。所以,热 天给车胎充气不宜太多,要留有余地。

多孔的冻豆腐

寒冷的冬天,吃上一碗热乎乎的"冻豆腐",那真算得上是一种别具风味的美菜呢!

豆腐本来是光滑细嫩的,冰冻以后,它的模样为什么会变得像泡沫塑料呢?

豆腐的内部有无数的小孔,这些小孔大小不一,有的互相连通,有的闭合成一个个小"容器",这些小孔里面都充满了水分。我们知道,水有一种奇异的特性:在4℃时,它的密度最大,体积最小;到0℃时,结成了冰,它的体积不是缩小而是胀大了,比常温时水的体积要大10%左右。当豆腐的温度降到0℃以下时,里面的水分结成冰,原来的小孔便被冰撑大了,整块豆腐就被挤压成网络形状。等到冰融化成水从豆腐里跑掉以后,就留下了数不清的孔洞,使豆腐变得像泡沫塑料一样。冻豆腐经过烹调,这些孔洞里都灌进了汤汁,吃起来不但富有弹性,而且味道也格外鲜美可口。

很早以前,我国人民就已经懂得了冰冻膨胀的原理,并利用它来开采石头:冬天,他们在岩石缝里灌满水,让水结冰膨大,把巨大的山石撑得四分五裂,很快就能采到大量的石料。

近年来,工业生产上出现了一种巧妙的新工艺——"冰冻成型",也是冰冻膨胀原理的应用。办法是:根据零件的形状,用强度很大的金属,做一个凹形的阴模和一个凸形的阳模,把要加工的金属板放在两个模的中间,在阳模和密闭的外壳之

间,灌满 4℃左右的水,然后把这个装置冷却到 0℃以下。这时,由于水结冰,体积膨胀,所产生的巨大力量把阳模压向阴模,便把金属板压成一定形状的部件了。

由于水在 4° C时的密度最大,体积最小,水温低于 4° C时体积反而增大,所以,在 4° C时水就不再上下对流了。因此,到了冬季,寒冷地区的江河湖海,表面上虽然结了厚厚的冰层,但下面水的温度却保持在 4° C左右,这就给水生物创造了生存的环境。

冰冻也会给人们带来危害,它能使水缸冻破,把自来水管 道冻裂……因此,在冬季来临的时候,要及时做好保暖防冻工 作。

吃鸡蛋有诀窍

五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。

细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带"肉"一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。

一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带"肉"一起下来了。

明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越

接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。

另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的"启动器"里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。

时装的颜色

"冬不穿白,夏不穿黑。"这是人们从生活实践中总结出来的经验,你知道它包含的科学道理吗?

我们生活的自然环境,五光十色,美丽动人,有红色的花,绿色的草,蓝色的天空,白色的云朵……各种物体都具有各自的色彩。可是,这些艳丽的颜色,在漆黑的夜里就统统消失了。这说明只有在阳光(白色光)的照射下,物体才呈现出颜色。那么,为什么在同样光源的照耀下,各种物体会有不同的颜色呢?

我们知道,太阳光是由红、橙、黄、绿、蓝、靛、紫多种色光混合而成的。不同的物体,对不同颜色的光线,吸收能力和反射能力又各不相同。被物体吸收的光线,人们就看不见,只有被反射的光线,人们才能看到。因此,某种物体能反射什么颜色的光,在我们看来,它就具有什么样的颜色。如红色的花,是因为它只能反射红色的光线,把其他颜色的光线都吸收了;白色的东西能够反射所有颜色的光线,因此看起来就是白色的;而黑色的东西却能吸收所有颜色的光线,没有光线反射回来,所以看起来就是黑色的了。

太阳不仅给人们送来光明,而且还送来了大量的辐射热。对于辐射热来说,黑色也是只吸收,不反射,而白色正好相反。

一般说来,深色的东西,对太阳光和辐射热,吸收多,反射少;而浅色的东西,则反射多,吸收少。因此,夏天人们都喜欢

穿浅色衣服,像白色、灰色、浅蓝、淡黄等,这些颜色能把大量 的光线和辐射热反射掉,使人感到凉爽;冬季穿黑色和深蓝色 的衣服最好,它们能够大量地吸收光和辐射热,人自然就感到 暖和了。

人们认识了自然规律,就能在生产技术上加以利用。像大型露天煤气罐、石油罐的表面都漆成银白色,目的就是为了提高它们反射阳光和辐射热的能力,使罐的温度不致升得过高,以免引起爆炸事故。

人们还利用反向和吸收的原理来征服自然界,让它为人类服务。我国西北部有座祁连山,山上盖满了厚厚的冰雪。可是,因为山很高,上面很冷,就是炎热的夏天,强烈的阳光和辐射热照上去,也都被那白色耀眼的冰雪给反射回去了,所以积雪没法融化。结果山下大片的田地,都因缺水而荒芜了。解放后,党领导人民向大自然进军,为了叫祁连山交出水来,政府派了工作队,用飞机把碳黑撒到祁连山的积雪上,乌黑的碳黑拼命地吸收着光和热,使粘有碳黑的积雪融化了,祁连山终于献出了滔滔的雪水。