

高等职业院校对口招生考试指定复习用书

凌颂良 主编

总复习方案·机械专业综合

主 编:董月和 副主编:方四清

权威胜 导向胜 实用性

🧱 电子种技术学出版社

高等职业院校对口招生考试指定复习用书

根据新考纲 新教材编写

总复习方案 • 机械专业综合

主 编 董月和

副主编 方四清

电子科技大学出版社

图书在版编目(CIP)数据

总复习方案. 机械专业综合/董月和主编. 一成都:电子科技大学出版社,2009.12 (单招零距离/凌颂良主编)

ISBN 978-7-5647-0227-4

I.总··· □.董··· □.机械学一专业学校一升学参考资料 Ⅳ. TH11 中国版本图书馆 CIP 数据核字(2009)第 202461 号

单招零距离 总复习方案·机械专业综合 主 编 董月和 副主编 方四清

版: 电子科技大学出版社(成都市—环路东—段 159 号电子信息产业大厦

邮编:610051)

策划编辑:谢晓辉 袁 野

责任编辑:周元勋

主 页: www.uestcp.com.cn 电子邮箱: uestcp@uestcp.com.cn

发 行: 新华书店经销

印刷:淄博搏鑫印刷有限公司

成品尺寸: 185mm×260mm 印张 27 字数 654 千字

版 次: 2009 年 12 月第一版

卬 次: 2009 年 12 月第一次印刷

书 号: ISBN 978-7-5647-0227-4

定 价: 72.00 元

■版权所有 翻印必究■

- ◆ 本社发行部电话:028-83202463;本社邮购电话:028-83208003。
- ◆ 本书如有缺页、破损、装订错误,请寄回印刷厂调换。

编写委员会

(排名不分先后)

主 任 凌颂良

编 委 芮桃明 孙长云 王亚明

宋加春 张国龙

丛书前言

一年一度的对口升学考试牵动着数万考生、教师和家长的心,能在复习迎考期间拥有权威性、 导向性、实用性的精品资料是每个考生最大的心愿。

《单招零距离》丛书的编写一直遵循"为了一切考生、为了考生一切"的宗旨,本着"与时俱进、精益求精"的理念。丛书编委会在广泛听取各方面专家意见的基础上,认真研究最新考纲的走向,集众家之长,及时组织省内有丰富教学经验的一线骨干名师对丛书进行改版编写。这些参编人员中有新考纲、新教材的编写者,有参加对口高考命题的名师以及省中心教研组成员。其所编写资料权威性、导向性、实用性不言而喻。

单招零距离丛书特色:

精益求精 专家倾力打造,彰显最新命题动态

权威预测 各科试题与单招考题常有惊人吻合

覆盖面广 12个单招专业,讲练测全面有机融合

实用性强 三轮复习,循序渐进,纵横梳理,直击考点

※一轮 总复习方案和配套测试卷》(书)

亮点一:权威性——教研专家与一线名师联袂打造,洞观考纲最新变化,精心编著,成为业界 公认的品牌畅销复习用书。

亮点二:实用性——依纲扣本;突出重点,梳理考点,精析难点;同步配套试卷出新求变,多层 面检测复习效果。

亮点三:导向性——贴近对口高考,适时应变,引领命题最新动态。

※二轮 传题点拨与强化训练》

亮点一:精选专题, 直击考点, 强化训练, 合点成面;

亮点二:提纲挈领,精解精析,强化训练,提高能力。

※三轮专家预测冲刺金卷

亮点一:汇资深专家之精华,集名校备考之秘笈;

亮点二:精研考试信息动态,体现命题最新趋势;

亮点三:与单招真题高度吻合。

本系列丛书包含公共基础课和专业基础课十多门学科的一、二、三轮复习用(书)(卷)。其中本册《总复习方案·机械专业综合》依托最新考纲,紧扣国家审定教材,编写内容结构合理,讲、学、练、测全面有机融合,题型、题量科学适当,更能满足广大师生复习迎考的需求。

《单招零距离》丛书多年来得到各方面专家的肯定和关心支持,现已成为广大职教师生有口皆碑的对口升学教辅第一品牌。"临风斩浪腾云去,欲上天宫揽玉钩"。求学途上苦苦求索的莘莘学子,愿《单招零距离》助你走向渴望的高校殿堂。

丛书编委会 www.wfjyts.com

目 录

第-	部分 机	l械基础·······	1
	第1讲	机械基础基本概念	1
	第2讲	平面连杆机构	··· 5
	第3讲	凸轮机构	• 17
	第4讲	其他常用机构	• 28
	第5讲	摩擦轮传动与带传动	• 37
	第6讲	螺旋传动	• 48
	第7讲	链传动和齿轮传动	• 57
	第8讲	蜗杆传动	• 76
	第9讲	轮系	· 85
	第 10 讲	键、销及其连接	• 93
	第 11 讲	轴	• 98
	第 12 讲	轴承	107
	第 13 讲	联轴器和制动器	116
	第 14 讲	液压传动的基本概念	119
	第 15 讲	液压元件	130
	第 16 讲	液压基本回路及液压系统	143
第二	部分 机		156
	第1讲	制图的基本规定及技能	156
	第2讲	投影法基础	164
	第3讲	图样的基本表示法	180
	第4讲	常用件的特殊表示法	190
	第5讲	零件图	199
	第6讲	装配图	217
第三	部分 电	l工技术基础······	227
	第1讲	电路的基本概念和基本定律	227
	第2讲	简单直流电路	233
	第3讲	复杂直流电路	240
	第4讲	电容和电容器	247
	第5讲	磁场与电磁感应	251

	第 6	讲	单相与三	三相正弦交	き流电路	258
	第 7	讲	变压器与	可交流电动	り机・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	271
第四	部分	1 村	ル械制造コ	C艺基础··		276
	第 1	讲	切削加口	匚的基础知	口识	276
	第 2	讲	常用加口	匚方法		282
	第 3	讲	机械加口	[工艺规程	量的制订	306
	第 4	讲	典型零件	牛的加工…		314
第王	部分	定(全属材料 与	⋾热处理 ⋯		322
	第 1	讲	金属的机	几械性能…		322
	第 2	讲	金属的晶	1体结构与	5结晶	326
	第 3	讲	铁碳合金	È		330
	第 4	讲	常用的金	È属材料…		336
	第 5	讲	钢的热处	上理		344
第六	部分	1 村	几械专业组	宗合测试卷	<u> </u>	354
参考	答案	₹				399

第一部分 机械基础

第1讲 机械基础基本概念

学习目标及考纲要求

- 1. 了解机械、机器、机构、构件、零件的概念。
- 2. 理解机器与机构、构件与零件的区别。
- 3. 掌握运动副的概念,熟悉运动副的类型、应用,了解其使用。

夏:车辆

商:脚踏水车---链传动

1. 古代机械的应用√西汉:指南车、记里鼓车——轮系

东汉:水排——带传动、平面连杆机构 晋:连机碓——凸轮机构

2. 基本概念

1)机器与机构(见表 1-1-1)

表 1-1-1

W 1 1 1						
项目 名 称	功用	组成	特征	实例		
机器	做功或能量转换	①动力部分 ②传动部分 ③工作部分 ④自控部分	(1)构件的组合 (2)确定的相对运动 (3)做功或能量转换	车床		
机构	传递运动或改变运动形式	①固定构件 → 运动副 ↑ ②运动构件	①构件的组合 ②确定的相对运动	齿轮传动链传动		

2)构件与零件

零件——最小的制造单元(如螺栓、单个齿轮等)

(制造学分析)

表 1-1-2

项目 分 类	接触形式	常见类型	特点
高副	点或线	直齿轮传动——线 斜齿轮传动——点—线—点 蜗杆传动——线 凸轮机构	效率高 传送复杂运动规律 寿命短
低副	面	转动副——铰链 移动副——滑块与机架 螺旋副——丝杠与螺母	效率低 不能传递复杂运动规律 (四杆机构除外) 承载大、寿命长

4)机械传动的分类

按构件接触方式 (直接接触传动(如齿轮、蜗杆传动、齿条传动) 结构中有挠性件传动(如链传动、带传动)

注:

- ①"副"是成对的意思,运动是两构件间的一定相对运动。
- ②由于直接接触限制了构件的独立运动,故运动副是约束(平面物体有3个独立运动,空间物体有6个独立运动)。
 - ③机构就是若干构件用若干运动副组合而成。

 - ⑤常用平面运动副的图形符号(如图 1-1-1 所示):

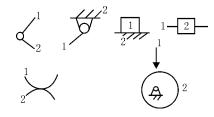


图 1-1-1 运动副符号

3. 机构运动示意图

1)定义:

用简单线条、符号表示构件、运动副及构件间相对运动关系的简图。

- 2)作图方法:
 - (1)分析机构,找出原动件(标出运动箭头)、机架及各构件间运动副类型。
 - (2)选取与构件运动平面平行的面做作图平面。
 - (3)用简单线条代替各构件,用符号代替运动副,相互连接而成。
 - (选定原动件,从其出发找出与其相连的构件、运动副;再找出与这些构件相连的构件、运动副,

依次找到最后全为机架结束,标上构件序号及原动件箭头)

- 【例1】 构件是最小的运动单元,故其一定是运动的()。
- 【解】 本题解题的关键是:构件的概念;本题的答案为:"×"。
- 【例 2】 下列实物:车床、洗衣机、齿轮减速器、机械钟表、台虎钳、水泵、蒸汽机、台钻;其中哪几种是机器、机构?
- 【解】 本题解题的关键是:机器的功能是作有用功或转变能量形式,机构只能转换运动形式。故本题的正确答案为:车床、洗衣机、水泵、蒸汽机、台钻等为机器;齿轮减速器、机械钟表、台虎钳为机构。
 - 【例 3】 零件能组成有确定相对运动的构件的理由是。
 - 【解】 本题解题的关键是:构件、零件的概念;本题的答案为"无相对运动"。
 - 【例 4】 根据传动路线框图说明机器的组成部分。

- 【解】 本题解题的关键是:机器各组成部分的功能;本题的答案为:电机为原动部分,带轮、主轴箱、挂轮箱、进给箱、丝杆、光杆、溜板箱为传动部分,主轴、卡盘、刀架为工作部分。
 - 【例 5】 运动副是指两构件之间互相____,又具有确定的____的连接。(2008年试题)
- 【解】 本题无含量可言,只是要能抓住运动副定义中的关键词;同样地在今后的学习中特别是记忆定义原理时抓住关键字,关键词或关键句。本题答案为:接触,相对运动。
 - 【例 6】 低副机构一定不能传递较为复杂规律的运动()。(2009 年试题)
- 【解】 本题考核的是知识的迁移性,从一般意义上讲,低副是不能传递复杂运动规律,但从个别情况来看,有时是可以的,如四杆机构。因此在同学们在学习时要灵活些,学会全局思考问题。本题答案:"×"。

一、填空题

– . –			
1. 机器具有的共同特征是:它是	的组合:	:各运动实体之间具有	;
能代替或减轻人类的劳动,完成	或实现	的转换。	
2. 机器与机构的区别在于:机器是利用_		做有用功或实现	转换;机
构则用于传递或转变的形式。			
3. 组成螺旋副的两构件间可产生	和	的组合运动。	
4. 机械基础的研究对象是。			
5. 机构中的静件功用是	o		
6. 低副可分为、、、	和	三种。	
7. 晋朝时的连机碓、水碾采用	原	理制造的。	

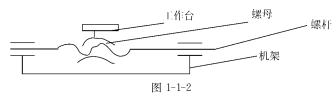
)

二、判断题

- 8. 一根轴上用键连接有一个齿轮,它们组成1个构件。 (
- 9. 自行车的车轮在转动时,与支承轴组成转动副。
- 10. 构件一定是零件。
- 11. 高副比低副的承载能力大,故称为高副。)
- 12. 机构是用来传递运动和动力的构件系统。)
- 13. 凡是机器都是由机构组成的。 ()
- 14. 转动副的一种具体形式是铰链连接。)

15. 低副由于是滑动摩擦,故接触处比高副更易磨损。

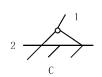
三、冼择题


- 16. 电风扇中的转轮属于机器的()。
 - A. 自控部分 B. 传动部分
- C. 原动部分 D. 工作部分

- 17. 下列()属于机构。
 - A. 汽车
 - B. 拖拉机
- C. 缝纫机踏板装置 D. 发电机
- 18. 下列关于构件概念的最正确表述是()。
 - A. 构件一定由零件组合而成的
- B. 构件是机器的装配单元
- C. 构件是工厂的最小制造单元
- D. 构件是机器的运动单元

- 19. 机械是()总称。
 - A. 机床
- B. 机械产品
- C. 机器
- D. 机器和机构
- 20. 下列实物:①牛头刨床 ②机械式钟表 ③电动机 ④台式钻床中,()个是机器。
 - A. 1 B. 2
- C. 3
- D. 4

- 21. 下列实物中()是标准件。
 - A. 电风扇叶片 B. 起重吊钩 C. 柴油机曲轴


- D. 键
- E. 缝纫机脚踏 F. 洗衣机波轮
- 22. 如图 1-1-2 所示螺旋机构(车床溜板)是由()个构件组成。
 - A. 3
- B. 4
- C. 5

23. 如图 1-1-3 所示符号,()表示高副。

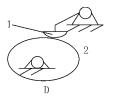


图 1-1-3

四、问答题

- 24. 根据单缸内燃机示意图 1-1-4, 回答:
- (1) 序号 1、2、3、4、9 是 件, 因它们相互间存在 ; 序号 5、6、7、8 是

件;相互间无_	o		
(2)图中有	个运动副;它们都是	副,传动效率	,承载能力
•			
(3)从能量转换上看,	这是一台;仅从运	动和结构上看它是	0
(4)主动件是	件;工作中会产生	现象,所以要在	件上安装
越过。			
		1一曲轴	
	4	2-连杆 3-活塞	
	5	4-气缸	
		5-连杆体	
		1 6-螺母 7-连杆盖	
		9 8-螺栓	
	7 8	9-轴承	

图 1-1-4

第2讲 平面连杆机构

学习目标及考纲要求

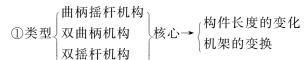
- 1. 了解铰链四杆机构的类型、特点及应用。
- 2. 掌握三种基本形式的判别条件。
- 3. 了解急回运动特性及应用,了解"死点"的产生及克服方法。
- 4. 了解铰链四杆机构的演化形式及其应用。

知识梳理

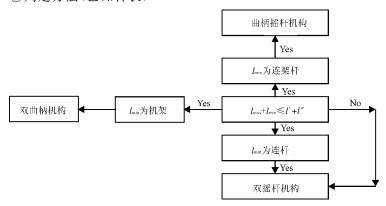
1. 铰链四杆机构

1)四杆机构的组成及特点

实现较为复杂的运动规律

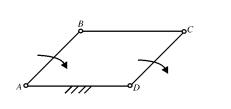

の性点 | 运动形式转换

②特点

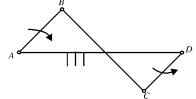

承载大、寿命长

2)四杆机构的类型、判定及应用

②判定方法(已知杆长)


注:抓住部分核心,一是长度关系,二是最短杆做什么!

3)应用(见表 1-2-1)


表 1-2-1

英 型	最短长度 杆件作为	运动形式转换	典例
曲柄摇杆机构	连架杆	回转≒往复摆动	雷达天线仰角调节,搅拌机,破碎机,剪板机
双曲柄机构	机架	回转∽回转	惯性筛 车门启闭机构 列车车轮联动机构 小型插床的主运动机构
双摇杆机构	几构 连杆	往复摆动∽往复摆动	自卸翻斗 飞机起落架机构 港口起重机 机床夹具 折叠椅

注: $l_{\text{max}} + l_{\text{min}} = l' + l''$ 条件存在时常表现为双曲柄机构中的两种特殊形式,即平行四边形机构如图 1-2-1(a)所示,反向双曲柄机构如图 1-2-1(b)所示。

(a)平行四边形机构 典例:列车车轮联动机构,物理天平

(b)反向双曲柄机构 典例:车门启闭机构

图 1-2-1

特别提醒:上述两机构中,以最短件为连杆,机构类型仍为双曲柄机构。

2. 基本形式的特性

1)定义:以曲柄为主动件,机构从动件的空回程速度大于工作行程速度的性质(图 1-2-2):

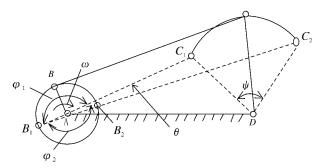


图 1-2-2

$$\begin{vmatrix} C_1 \to C_2, B_1 \to B_2, \varphi_2 = 180 + \theta = \omega t_1 \\ C_2 \to C_1, B_2 \to B_1, \varphi_1 = 180 - \theta = \omega t_2 \end{vmatrix} = \to v_{\text{II}} = \frac{\widehat{C_2 C_1}}{t_2} > v_1 = \frac{\widehat{C_1 C_2}}{t_1}$$

- 2) 行程速比系数(急回特性系数) $K = v_{\text{\tiny Pl}}/v_{\text{\tiny T}}$ 。
- $(1)K = v_{\parallel}/v_{\perp} = (C_2C_1/t_{\parallel})/(C_1C_2/t_{\perp}) = t_2/t_1 = (\varphi_1/\omega)/(\varphi_2/\omega) = (180^{\circ} + \theta)/(180^{\circ} \theta) = \varphi_1/\varphi_2;$
- (2) *K*>1,有急回特性,*K* ↑,急回特性愈显著;
- $(3)K=1,\theta=0^{\circ}$,无急回特性(如平行双曲柄,曲柄滑块机构等);
- (4)利用急回特性可缩短非生产时间,提高生产率。
- (插床,惯性筛;牛刨、往复式运输机)
- 3)极位夹角 θ:主动件与连杆两共线位置角(即连杆两极限位置的夹角):

$$(1)\theta = \frac{K-1}{K+1} \times 180^{\circ}$$

(2)θ ↑ , *K* ↑ , 急回性愈显著。

₍平行双曲柄、对心曲柄滑,θ=0°;反向双曲柄、双摇杆机构谈不上"θ"

- (3)特殊的 θ 摆动导杆机构; $\theta = \phi_{\$}$ 摆块机构: $\theta = \phi_{\$}$
- 4)摇杆摆角 ψ:摇杆两极限位置的夹角:
- (1)θ与ψ是完全不同的参数。
- (2) ⟨ψ 的大小取决于曲柄的长度, r_曲 ↑, ψ ↑ ψ 的方位取决于连杆的长度

3. "死点"位置

- 1)定义:连杆与从动件(曲柄、摇杆)的共线位置:
- (1)一般以往复运动构件为主动件(不以曲柄为主动件),均有"死点";
- (2)此位置连杆对从动件作用力通过从动件转动中心,有效力矩为 0,使从动件卡死或(自锁)运动方向不确定。 $(\alpha=90^\circ,\gamma=0^\circ)$
 - 2)预防措施(因其对机构传动不利):
 - (1)在从动件上安装飞轮,靠从动件的惯性贮能越过"死点";
 - (2)安排多组机构错列(使死点不同时出现);
 - (3)不官装飞轮时,用辅助构件(机车装置);
 - (4)限制摇杆摆角(双摇杆机构)。

3)利用:

如机床夹具、飞机起落架、钢折叠椅等。

4. 压力角和传动角(如图 1-2-3 所示)

1)压力角α:从动件受力方向与受力点运动方向夹的锐角。

(1)从动件受力
$$F$$
 分成 $\begin{cases} F_{\iota} = F \cos_{\alpha} - ---$ 起推动作用,有效分力 $\\ F_{n} = F \sin_{\alpha} - ---$ 增大摩擦阻力,有害分力

- (2)不同位置 α 不同,为保证传动, α \checkmark 好, α_{max} ≤40° ~50°。
- 2) 传动角 γ : 力 F 与 F_n (从动件轴线) 间夹角。
- (1)_α+γ=90°,γ ↑ ,传力性能 ↑;
- (2)传动中不同位置 γ 不同,应限制 $\gamma_{min} \gg [\gamma] = 40° 至 50°;$
- $(3)\gamma = \delta_{\min}$ 或 $180^{\circ} \delta$ (锐角 $\gamma = \delta$, 钝角时 $\gamma = 180^{\circ} \delta$), γ_{\min} 取决于 δ_{\min} 或 δ_{\max} 的位置, 而 δ 大小 取决于BD 的长度大小;

$$BD \rightarrow \left\{ egin{aligned} BD_{\max} = AD + AB \\ BD_{\min} = AD - AB \end{aligned}
ight\}$$
即曲柄与机架两共线位置时 γ_{\min} 最小,应加以限制, $\gamma_{\min} \geqslant [\gamma] = 40^{\circ} \sim 50^{\circ}$ 。

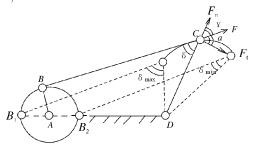


图 1-2-3

6. 演化过程(如图 1-2-4 所示)

曲柄摇杆机构

曲柄滑块机构

7. 曲柄滑块机构

- ①形成条件: l_{曲柄} ≤ l_{连杆}, (曲柄摇杆机构) $l_{\text{播杆}}$ →∞, 演化而成。
- 对心曲柄滑块机构 偏置曲柄滑块机构
- ③对心曲柄滑块机构行程:2l曲柄。

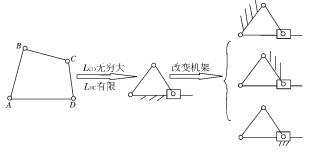


图 1-2-4

当滑块行程较小,可将曲柄与连杆制作成一体一偏心轮→偏心轮机构。 特别提示:偏心轮机构只可以偏心轮为主动件。

8. 导杆机构

- ①形成条件:曲柄滑块机构 变换机架 导杆机构。构件长度
- ②图形转换(如图 1-2-5 所示):

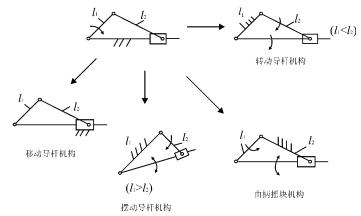


图 1-2-5

9. 运动形式转换、急回特性、死点位置等特征分析(见表 1-2-2)

表 1-2-2

項 目 名 称	运动形式转换	急回特性		死点位置 (a=90°)	实例
曲柄滑块	回转⇆往复直线	对心 无 偏置 有		(滑块为主动件)	搓丝机,压力机,内 燃机气缸机构
转动导杆	匀速回转同向变速回转	变速回转 有		无	插床主运动机构
摆动导杆	回转	有		有(导杆为主动件)	牛头刨床主运动机构
摇块	回转≒往复摆动	/		/	自卸翻斗机构
定块	摆动∽往复直线			/	唧水筒

【例1】 判别图 1-2-6 所列四杆机构的类型。

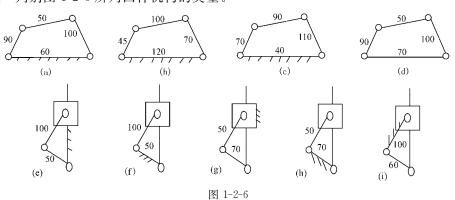


图 1-2-7

【解】 本题解题的关键是:熟悉铰链四杆机构类型判别的条件;图 1-2-6(a)~图 1-2-6(d)机架不变,根据杆长度条件可知答案为:图(a)——双摇杆机构,图(b)——曲柄摇杆机构,图(c)——双曲柄机构,图(d)——双摇杆机构;图 1-2-6(e)~图 1-2-6(i)根据四杆机构的演化原理及导杆机构转化条件,可得答案为:图(e)——曲柄滑块机构,图(f)——转动导杆机构,图(g)——定块机构,图(h)——摆动导杆机构,图(i)——摆块机构。

【例 2】 曲块滑柄机构、导杆机构也是典型的铰链四杆机构。()

【解】 本题解题的关键是:铰链四杆机构的运动特点;本题答案为"×"。

【例 3】 某摆动导杆机构,导杆处于极限位置时,导杆与机架的夹角为 30°,已知该机构空回行程时间为 2 秒,则该机构工作行程所需时间为()秒。

A. 1 B. 2. 8 C. 3 D. 4

【解】 本题解题的关键是:摆动导杆机构的极位夹角与导杆摆角的关系及 K 值与 θ 角的关系;本题由极位夹角和导杆摆角相等可求出 K 值,再用 $K=t_{\rm T}/t_{\rm M}$ 可求出工作行程时间为 4 秒,即答案为"D"。

【例 4】 如图 1-2-7 所示铰链四杆机构, $L_{BC} = 50$, $L_{CD} = 35$, $L_{AD} = 30$,AD 为机架,若机构为双曲构,求 $L_{AB\,min}$ 。

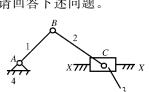
【解】 本题解题的关键是:四杆机构组成条件的运用。

双曲柄→AD 为最短杆且 $L_{AD}+L_{max} \leq L'+L''$

AB 杆为中间杆:

 $30+50 \le 35+L_{AD} \to 45 \le L_{AD} \le 50$

AB 杆为最长杆:


 $L_{AD} + 30 \le 50 + 35 \rightarrow 50 \le L_{AB} \le 55$

 $45 \le L_{AB} \le 55$

取 $L_{ABmin} = 45$

如图 1-2-8 所示两个曲柄滑块机构 ABC,构件 1 为曲柄,构件 2 为连杆,构件 3 为滑块,构件 4 为机架。图(a)中滑块 3 的运动方向 XX 通过 A 点,图(b)中滑块 3 的运动方向 XX 与 A 点之间的距离为 e,且 $e\neq 0$,请回答下述问题。

(a)

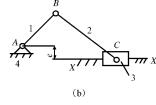


图 1-2-8

- (1)在图(a)中,当机构中的构件_____为主动件时,机构____(有、无)死点位置。
- (2)在图(b)中,当机构中的构件_____为主动件时,机构____(有、无)死点位置;进一步,如果图(b)机构有死点位置,在本题下面的空白处画出该机构的死点位置。
 - (3)在图(a)和图(b)中,若曲柄 1 为主动件,并以角速度 ω 顺时针等速转动,则图(a)中机构 __ (有、无)急回特性,图(b)中机构 __ (有、无)急回特性。
- (4) 若图(a) 所示机构用作为内燃机的主运动机构,则其中的曲柄一般设计成_____的结构;图(b) 所示机构,当曲柄 1 的长度较小时,曲柄一般设计成 的结构。

【解】 本题的考核点是死点位置与急回特性研究,其实在解决此类问题时首先要找到切入点,

