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PREFACE

Statistical physics establishes a bridge from the macroscopic world
to study the microscopic world. All theories in which the Boltzmann con—
stant appears involve statistical physics. This is a theory with the fewest
assumptions and the broadest conclusions. Up to now there is no evi-
dence to show that statistical physics itself is responsible for any mis—
takes, a reflection of the natural beauty of this science.

Statistical physics has become an important branch of modern theo—
retical physics. At the same time it has influenced many fields, so this
course has become one of the common fundamental courses of graduate
students in different majors in physics departments.

Statistical physics is a branch of science engaged in studying the
laws of thermal motion of macroscopic systems. It has its own special
laws , which cannot be derived from mechanical laws. However mechani—
cal law is one of its foundations. Statistical physics when based on clas—
sical mechanics is called classical statistics, while statistical physics
based on quantum mechanics is called quantum statistics. Usually statis—
tical physics as taught in fundamental courses for undergraduate students
focuses mainly on classical statistics, while advanced statistics for gradu—
ate students mainly studies quantum statistics.

Chapter 1 of this book outlines the fundamental principles of statis—
tical physics. Chapter 2, with simple applications of these principles,
solves some typical problems in statistical physics, i. e. quantum perfect
gases. Chapters 3 and 4 are devoted to the study of second quantization
for many-particle systems and fields. Chapter 5 addresses Bose-Einstein

condensation. Chapter 6 is devoted to the study of a class of inverse
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problems in quantum statistics, their Chen ( or Méobius-Chen) exact
solution formulas, Dai’s exact solution formulas, asymptotic behavior con—
trol ( ABC) theory, and concrete realizations of the inversion theories,
especially obtaining the phonon spectrum from real specific heat data for
high Tc¢ superconductors. Chapter 7 is an introduction to the theory of
Green’s functions in quantum statistics ( where double4ime Green’s func—
tions are the main tool) . Chapter 8 presents the unified diagonalization
theorem for Hamiltonians of quadratic form, for both Fermi and Bose
systems. Chapter 9 is an introduction to the third formulation of quantum
statistics and the functional integral approach. Applying this formalism
along with the diagonalization theorem established in chapter 8, an as—
ymptotically exact solution is obtained in the thermodynamic limit for a
model of superconductivity. The first four chapters are fundamental, and
should be well known. The last five chapters are recent developments.

This course was edited by revising the lecture notes of the author,
from courses of quantum statistics and advanced statistics for graduate
students in the Department of Physics, Fudan University, since 1978.
At the same time, this work contains the research results of some related
projects, supported by the National Natural Science Foundation of China
( NSFC: Nos. 19975009; 10174016; 19834010.) The author thanks
the NSFC for its valued support over many years. I would like to thank
my graduate students and students, especially including Dr. T. Wen,
D.M. Ming, G. X. Hu, L. Sun, J.P. Ye, Mr. F. M. Ji, Y. He,
Miss X. Xiang and etc, who studied these courses in a variety of majors
in our and related departments, for their important support and discus—
sions.

I also would like to sincerely thank Prof. C. N. Yang, my teacher,

and Prof. Zhou Shixun, for their guidance and encouragement, Prof.
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W. E. Evenson for his significant discussions and improving the Eng—
lish. T would like to express my special thanks to Prof. Wang Xun, for
his important support and encouragement for this book.

I would like to thank all those who have helped me in writing and
editing the book. Because of the limitations of the author, mistakes and
errors are unavoidable, so all suggestions and comments which will help

to improve the book are sincerely welcome.

Xianxi Dai
February, 2007

Fudan University
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Fundamental Principles

1.1 Introduction: The Characters of Thermodynamics
and Statistical Physics and Their Relationship

Thermodynamics and statistical physics have the same focus of study:
the laws of thermodynamic motion of macroscopic systems, consisting of
huge numbers of particles ( such as molecules, atoms, etc.) . However,
their starting points and methods are different. They have their own mer—
its and deficiencies and supplement each other.

Thermodynamics is a macroscopic phenomenological theory. From a
huge number of direct observations of phenomena and experiences, sci—
entists summarized and induced some fundamental laws of thermal mo-
tion, i.e. the zeroth, first, second and third laws of thermodynamics.
These fundamental laws can be applied to theoretically deduce and ex—
plain the equilibrium properties of macroscopic systems. The merit of the
theory of thermodynamics is that it is built upon a sound and broad ex—
perimental background. Its conclusions have high reliability and univer—
sality. Its general conclusions are independent of internal structures of
systems. Its limitations are also due to its phenomenological nature,
without microscopically taking into account the structures of atoms and
molecules. Thus it cannot be used to study fluctuation phenomena and to
obtain parameters related to material properties. However, the achieve—
ments of thermodynamics in non-equilibrium problems are rather limited.

The essential achievements of thermodynamic theory lie in setting
up the three thermodynamic laws, from which one can deduce universal
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internal relations for various thermodynamic quantities and attribute the
concrete characteristics of macroscopic systems to their equations of
state and specific heats, both of which can be directly measured or es—
tablished by experiment. Thermodynamics can also relate the concrete
properties of macroscopic systems to one characteristic function of the
system, then all the properties of the equilibrium states of the system
can be derived from this characteristic function and its derivatives with
respect to the corresponding characteristic variables. In other words, one
attributes the thermodynamic properties to the problem of the differential
geometry of the characteristic functions. Some important characteristic
functions, such as the internal energy, Helmholtz free energy,
Gibbs free energy, thermodynamic potential, etc. , can be calculat—
ed by statistical physics.

Thermodynamics allows statistical physics to concentrate on the cal-
culation of a single characteristic function, and other thermodynamic
quantities can then be derived using the universal thermodynamic rela—
tions.

Statistical physics is a microscopic theory. lIts starting point is dif-
ferent from that of thermodynamics. (1) It assumes or accepts the fact
that all macroscopic systems consist of molecules and atoms. (2) It as—
sumes the properties of the particles making up the system and the inter—
actions between them. These assumptions can be demonstrated or ana—
lyzed by other experiments. (3) It assumes that the motion of these par—
ticles obey mechanical laws, i. e. the macroscopic observed value is
taken to be the statistical average value. Statistical physics does not hold
that thermodynamic laws are mechanical laws, but it takes mechanics as
the foundation of statistical physics. The statistical laws are new special
laws which cannot be reduced to mechanical laws. As the number of
particles increases, statistical laws reveal themselves in the collective av—
erage properties of many-particle systems. As the number of particles de—
creases, the statistical properties disappear. For example, for a single
particle, there are no concepts of temperature and entropy.

The main achievements of statistical physics lie in the derivation of
the three fundamental laws of thermodynamics based on the fundamental
principles of statistics. Given some assumptions for concrete microscopic
structures, statistical physics can be used to derive the characteristic
functions, or state equations and specific heats. This theory can also be
used to calculate statistical fluctuations and various non-equilibrium
processes. lts limitations lie in lack of universality because it requires
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concrete assumptions about specific systems. Its strength lies in respect—
ing the individuality and the internal structures of the systems studied. It
is thus possible to understand the microscopic structures of these sys—
tems. An important historical contribution of statistical physics is in
studies of black-body radiation, which led to quantum theory.

Since one of the basic assumptions of statistical physies is that parti—
cle motions in a macroscopic system obey mechanical laws, then it is
necessary to distinguish what kind of mechanics: classical or quantum
mechanics? Statistical physics based on classical mechanics is called
classical statistics, while that based on quantum mechanics is called
quantum statistics.

Before the 1950, quantum statistics was primarily used to treat the
so—ealled perfect Fermi and Bose gas, i. e. the quantum gases without
interactions. Due to difficulties in the theory and limited mathematical
skills, practical systems with interactions could not be treated during that
period. Since the 1950%, quantum field theory, developed in particle
physics, has progressively matured. Although problems remain in its ap—
plications in particle physics, the methods of quantum field theory, such
as perturbation theory, Feynman diagram techniques, Green’s function
methods, etc. , poured into quantum statistics. After solving some im—
portant difficult problems, such as the mechanism of superconductivity
which has been un-solved for 40 years, quantum statistics rapidly devel-
oped and quickly formed into an important branch of theoretical physics.
This theory also provides a vast and practical testing field for studies of
fundamental theories. Major parts of modern quantum statistics are de—
voted to study the quantum statistics based on quantum field theory.

1.2 Basic Thermodynamic Identities

In general studies of thermodynamics, one primary studies the ther—
modynamic equilibrium properties of systems containing a fixed number
of particles. However, in studies of quantum statistics, one usually
needs to consider systems with variable numbers of particles, because
these kind of models can be applied to more general cases. Sometimes
their treatment is more convenient than that for fixed particle numbers in
mathematical calculations. In addition, there are physical systems where
the variable number of particles is an essential feature, rather than a
mathematical convenience. For example, the macroscopic condensate in
superconductors or superfluid liquid helium acts as a particle bath which
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