GAODENG SHUXUE JICHU

马景艳 主 编

杨文泰 郭丽娜 副主编

图书在版编目(CIP) 数据

高等数学基础/马景艳主编. —兰州: 甘肃民族 出版社, 2012. 8

ISBN 978-7-5421-2168-4

Ⅰ. ①高… Ⅱ. ①马… Ⅲ. ①高等数学 Ⅳ. ①013

中国版本图书馆 CIP 数据核字 (2012) 第 195144 号

书 名: 高等数学基础

作 者: 马景艳 主编

责任编辑: 张兰萍

封面设计: 兰州山水文画广告有限公司 (Designer / 张斌)

出 版: 甘肃民族出版社 (730030 兰州市读者大道 568 号)

发 行: 甘肃民族出版社发行部 (730030 兰州市读者大道 568 号)

印 刷: 甘肃天河印刷有限责任公司

开 本: 787毫米× 1092毫米 1/16 印张: 25 插页: 2

字 数: 480 千

版 次: 2012年8月第1版 2012年8月第1次印刷

印 数: 1~1000

书 号: ISBN 978-7-5421-2168-4

定 价: 55.00 元

甘肃民族出版社图书若有破损、缺页或无文字现象,可直接与本社联系调换。

邮编: 730030 地址: 兰州市读者大道 568 号 网址: http://www.gansumz.com

投稿邮箱: liuxingtian@yahoo.com.cn

发行部: 葛慧 联系电话: 0931-8773271 (传真) E-mail:gsmzgehui3271@tom.com

版权所有 翻印必究

内容提要

本书主要内容为函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分、定积分的应用以及线性代数中的多项式、行列式、矩阵与矩阵的运算等。

本书编写过程力求通俗浅显、叙述详细、逻辑清晰,并较多地配置例题和习题,便于教学,有较大的适应面,适合大学预科学生使用,也可作为高等专科院校不同专业学生参考用书。

前 言

预科教育是大学教育的特殊层次,预科教材应体现这种特殊性。随着基础教育的变革,中学数学教材有了大幅的调整;同时,大学各学科相关专业的发展趋势,也对数学素质与能力有了进一步的要求。因此,我们在总结实际教学经验的基础上编写了本教材。

在编写教材时,我们既考虑到教学大纲对内容和程度的要求,又考虑到数学学科的特点以及目前预科教育发展的实际教学情况,力图编写出一本适合实际教学需要的教材,使其能较好地起到"承前启后"作用。

本教材着重体现了数学学习对培养学生逻辑思维能力的重要影响。因此,教材对内容取舍、结构安排、程度要求及一些具体内容的处理都进行了认真分析和研究,也参考了不少高等院校编写的相关教材。教材中介绍的基本原理和方法,尽量采用学生易于接受的表述方式和证明过程,希望这样的处理既能保持数学学科本身的系统性、逻辑严密性和科学性,又有利于授课教师的实际教学。

本教材的编写,得到了西北民族大学校领导,西北民族大学教务处、预科 部等职能部门领导的大力支持,在此表示衷心的感谢。

限于编者水平,同时编写时间也比较仓促,因而教材难免存在疏漏和不妥 之处,希望广大读者提出批评和指正。

> 编者 2012 年 8 月

录 目

第一章	复数		(1)
§ 1	复数	的概念	(1)
§ 2	复数	的运算	(4)
§ 3	复数	的三角形式及三角形式的运算	(6)
§ 4	复数	的指数形式及指数形式的运算	(9)
第二章	一元,	· 次多项式与一元高次方程 ·····(13)
§ 1	待定	系数法(13)
§ 2	一元	n次多项式的除法 ······(16)
§ 3	最高	公因式(21)
§ 4	余式	定理与因式定理(25)
§ 5	因式	分解(27)
§ 6	一元	n 次方程 (30)
第三章	行列記	t(40)
§ 1	二阶	与三阶行列式(40)
§ 2	全排	列及其逆序数(43)
§ 3	n 阶 7	行列式的定义(46)
§ 4	行列	式的性质(49)
§ 5	行列	式按行(列)展开(54)
§ 6	克莱	姆法则(57)
第四章	矩阵及	及其运算(63)
§ 1	矩阵		63)
§ 2	矩阵	的运算(66)
§ 3	逆矩	阵	73)

第五章	矩阵的初等变换与线性方程组 (80)
§ 1	矩阵的初等变换 (80)
§ 2	矩阵的秩(85)
§ 3	线性方程组的解 (89)
第六章	极限与连续
§ 1	数列极限 (102)
§ 2	函数极限
§ 3	无穷小与无穷大 (124)
§ 4	极限的性质与运算法则 (128)
§ 5	无穷的比较
§ 6	函数连续与间断 (138)
§ 7	连续函数的运算法则 (142)
§ 8	初等函数的连续性 (144)
§ 9	闭区间上连续函数的性质 (147)
第七章	导数与微分
§ 1	导数的概念 (155)
§ 2	导数的运算法则 (162)
§ 3	反函数的导数 (165)
§ 4	复合函数的导数 (167)
§ 5	隐函数的导数 (170)
§ 6	参数方程所确定的函数的导数 (172)
§ 7	高阶导数
§ 8	微分
第八章	中值定理与导数的应用
§ 1	中值定理
§ 2	未定式的极限 (190)
§ 3	函数单调性的判别法 (195)
§ 4	函数的极值与最值 (198)
§ 5	曲线的凸性与渐近线 (204)

§ 6	函数图形的描绘 (208)
第九章	不定积分
§ 1	原函数与不定积分 (211)
§ 2	不定积分的性质(213)
§ 3	不定积分的运算 (215)
§ 4	不定积分的其它积分方法 (226)
第十章	定积分
§ 1	定积分的概念 (246)
§ 2	定积分的性质 (250)
§ 3	微积分基本定理 (253)
§ 4	定积分的计算 (257)
§ 5	广义积分 (260)
第十一章	定 定积分的应用 (268)
§ 1	定积分的几何应用(268)
§ 2	定积分的物理应用(273)
附录一	数学史初步 (279)
附录二	数学家简介(346)
附录三	初等数学相关公式(380)

第一章 复数

§1 复数的概念

有理数和无理数统称为实数,实数的性质为有序性、稠密性、连续性,对四则运算及非负实数的开方有封闭性,实数范围内负数开方没有意义,而在讨论二次方程,三次方程及更高次方程的一般解法时,实数是不够用的.

在 16 世纪,先后有数学家将负数的平方根用到公式中,并提出"虚数"一说,1747 年法国的达朗贝尔指出了虚数的表达形式为 a+bi,瑞士数学家欧拉首创了用符号 i 作为虚数单位,并规定 $i^2=-1$,有了虚数单位后,出现了复数的定义.

1. 复数的定义

形如 a+bi 的数称为复数,其中 $a,b \in R$,表示为 Z=a+bi,a 为 Z 的实部,b 为 Z 的虚部,并记作: ReZ=a,ImZ=b,i 为虚数单位, $i^2=-1$.

全体复数构成的集合称为复数集,记作 C,显然, $R \subseteq C$.

2. 复数的比较

- i) 虚数不能比较大小.
- ii) 两个复数相等的充要条件: 若 a + bi = c + di ⇔ a = c, b = d.

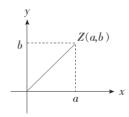
例1 已知(2x-1) + i = y - (3-y) i,求实数 x, y.

解 由两个复数相等的充要条件,得:

$$\begin{cases} 2x - 1 = y \\ 1 = -(3 - y) \end{cases} \quad \text{解得: } \begin{cases} x = \frac{5}{2} \\ y = 4 \end{cases}$$

3. 复数的几何意义

(1) 复平面的建立:



任何一个复数 a+bi 都可以由一个有序数对(a,b) 唯一确定. 我们借用平面直角坐标系来表示,将这样的表示复数的平面称为复平面,也称 Z 平面.

由于 x 轴上的点对应着实数,称 x 轴为实轴. y 轴上的点除原点外对应着纯虚数,称 y 轴为虚轴.

建立了这样的复平面之后,显然每一个复数在复平面内有唯一的点和它对应;反之复平面内的每一个点都有唯一的一个复数和它对应,即:复数集 C 和复平面内所有的点所成集合是——对应的.

(2) 复数与向量的对应关系:

在复平面内,以原点 O 为起点,对应于复数 a+bi 的点 Z(a,b) 为终点的连线 OZ 是一条有方向的线段,称为向量,记作 \overrightarrow{OZ}

$$Z = a + bi \leftrightarrow (a, b) \leftrightarrow \overrightarrow{OZ}$$

4. 模与共轭复数

(1) 复数的模:

原点 O 到 Z = a + bi 所对应的点 Z(a,b) 的距离称为复数 Z 的模,记作:

$$r = |OZ| = |a + bi| = \sqrt{a^2 + b^2}$$

 $|Z| = |a + bi| = \sqrt{a^2 + b^2}$

或

(2) 共轭复数:

设 $Z = a + bi, \overline{Z} = a - bi,$ 称 $Z 与 \overline{Z}$ 为共轭复数.

例2 求 $Z_1 = 3 + 4i$ 及 $Z_2 = -\frac{1}{2} - \sqrt{2}i$ 的模,并比较大小.

$$|Z_1| = \sqrt{3^2 + 4^2} = 5$$
 $|Z_2| = \sqrt{(-\frac{1}{2})^2 + (-\sqrt{2})^2} = \frac{3}{2}$

显然, $|Z_1| > |Z_2|$.

例3 设 $Z \in C$,满足 |Z| = 4 的点 Z 表示什么图形?

解 方法一: 设
$$Z = x + yi$$
, $\sqrt{x^2 + y^2} = 4$, $x^2 + y^2 = 16$

方法二: |Z-0| =4

点 Z 与原点的距离等于 4 ,故:满足条件点 Z 的集合是以原点为圆心以 4 为 半径的圆.

习题一

1. m 取何值时,复数($m^2 - 3m - 4$) + ($m^2 - 5m + 6$) i 是:

(1) 实数

(2) 纯虚数

(3)零

2. 求 x, y 的值:

$$(1) x^2 - y^2 + 2xyi = 8 + 6i$$

$$(2) 2x^2 - 5x + 2 + (y^2 + y - 2) i = 0$$

- 3. 已知复数: $1, i, 6 8i, 1 + i, 2 \sqrt{2}i$
- (1) 描述复平面内上述复数表示的点;

- (2) 求各共轭复数,并描出各共轭复数表示的点.
- 4. 比较复数 $Z_1 = -5 + 12i$; $Z_2 = -6 6\sqrt{3}i$ 的模的大小.
- 5. 设 Z ∈ C,满足下列条件的 Z 表示什么图形?

(1) |Z| < 3;

 $(2) 2 \le |Z| < 5.$

§2 复数的运算

1. 复数的加减法

设两个复数分别为 $Z_1 = a + bi$, $Z_2 = c + di$, 则:

- 1) $Z_1 \pm Z_2 = (a \pm c) + (b \pm d) i$
- 2) 复数加减法的几何意义:

加法理解为:已知过程量,过程量,求总量.

减法理解为:已知总量和其中一个过程量,求另一个过程量.

差的值是尾尾相连,方向指向被减数.

例 1 计算:
$$(5-6i) + (-2-i) - (3+4i)$$

解: $(5-6i) + (-2-i) - (3+4i)$
 $= [5+(-2)+(-6-1)i] - (3+4i)$
 $= (3-7i) - (3+4i)$
 $= -11i$

2. 复数的乘除法

设两个复数 $z_1 = a + bi$; $z_2 = c + di$

则: $①z_1 \cdot z_2$ 理解为"多项式相乘".

$$\exists I : z_1 \cdot z_2 = (a + bi) (c + di)$$

$$=(ac-bd)+(ad+bc)i$$

② $\frac{z_1}{z_2}$ 理解为"分母有理化"

$$\begin{split} \mathbb{E}\mathbb{P} \colon & \frac{z_1}{z_2} = \frac{a+bi}{c+di} = \frac{(\ a+bi)\ \cdot \ (\ c-di)}{c^2+d^2} = \frac{ac+bd+(\ bc-ad)\ i}{c^2+d^2} \\ & = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i \end{split}$$

解:
$$(1-2i)(3+4i)(-2+i)$$

= $[1 \times 3 - (-2) \times 4 + (1 \times 4 + (-2) \times 3) i](-2+i)$
= $(11-2i)(-2+i)$
= $-20+15i$

例3 计算:
$$\frac{5-5i}{-3+4i}$$

解:
$$\frac{5-5i}{-3+4i} = \frac{-35}{25} + \frac{-5}{25}i = \frac{7}{-5} - \frac{1}{5}i$$

3. 复数幂的运算

$$i^1 = i; i^2 = -1; i^3 = -i; i^4 = 1.$$

一般地: $i^{4k+1} = i; i^{4k+2} = -1; i^{4k+3} = -i; i^{4k} = 1.$

例 4 计算:
$$(\frac{1}{2} - \frac{\sqrt{3}}{2}i)^3$$

解:
$$(\frac{1}{2} - \frac{\sqrt{3}}{2}i)^3 = (\frac{1}{2} - \frac{\sqrt{3}}{2}i)^2(\frac{1}{2} - \frac{\sqrt{3}}{2}i) = -1$$

习题二

1. 计算:

$$(1) \left(-\sqrt{2} + \sqrt{3}i \right) - \left[\left(\sqrt{3} - \sqrt{2} \right) + \left(\sqrt{3} - \sqrt{2} \right) i \right] + \left(-\sqrt{2}i + \sqrt{3} \right)$$

$$(2) (1-2i) (2+i) (3-4i)$$

$$(3) (\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i)^2 (1+i)$$

$$(4)\frac{1-2i}{3+4i}$$

$$(5) \frac{(1-2i)^2}{3-4i} - \frac{(2+i)}{4-3i}$$

$$(6) \frac{\sqrt{5} + \sqrt{3}i}{\sqrt{5} - \sqrt{3}i} - \frac{\sqrt{3} + \sqrt{5}i}{\sqrt{3} - \sqrt{5}i}$$

2. 已知 $z_1 = 2 + i, z_2 = 3 - i, 求 z_1$ 与 z_2 之间的距离.

3. 已知
$$z_1 = 5 + 10i$$
, $z_2 = 3 - 4i$, $\frac{1}{z} = \frac{1}{z_1} + \frac{1}{z_2}$, 求 z .

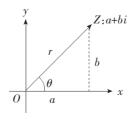
- 4. 设 z = x + yi, 且 $z^2 = 5 12i$, 求 z.
- 5. 已知 z 为虚数,且|z| + z = 2 + i,求 z.

§3 复数的三角形式及三角形式的运算

1. 复数的三角形式

我们将a+bi称为复数的代数形式,在复平面内,复数有以下几个特点:

- (1) 复数的模: $r = \sqrt{a^2 + b^2}$
- (2) 辐角: 辐角的方向定为 x 轴正方向到向量 \overrightarrow{OZ} 的角 θ ,叫作 a+bi 的辐角. 显然,一个非零复数的辐角为: $2k\pi+\theta,k\in Z$,其中适合于 $0\leq\theta<2\pi$ 的辐角 θ 的



值(或最小的一个 θ) 称辐角主值; 记作: argZ.

显然,设 $a \in R^+$,则:

$$\arg a = 0$$
; $\arg(-a) = \pi$; $\arg ai = \frac{\pi}{2}$; $\arg(-ai) = \frac{3}{2}\pi$

(3) 复数的三角形式:

$$Z = a + bi$$

$$= r\cos\theta + r\sin\theta i$$

$$= r(\cos\theta + i \cdot \sin\theta)$$

其中,
$$\cos\theta = \frac{a}{r}$$
; $\sin\theta = \frac{b}{r}$; θ 为辐角主值.

这个等式同时提供了复数代数形式与三角形式的转换方式.

2. 复数代数形式与三角形式的互化

例1 将下列复数的代数形式转化为三角形式:

$$(1)\sqrt{3} + i = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6});$$

$$(2) \ 1 - i = \sqrt{2} (\cos \frac{7}{4} \pi + i \cdot \sin \frac{7}{4} \pi) \ ;$$

$$(3) -1 = \cos \pi + i \cdot \sin \pi.$$

3. 复数三角形式的运算

设
$$z_1 = r_1(\cos\theta_1 + i \cdot \sin\theta_1)$$
; $z_2 = r_2(\cos\theta_2 + i \cdot \sin\theta_2)$.

(1) 乘法:
$$z_1 \cdot z_2 = r_1 r_1 \left[\cos(\theta_1 + \theta_2) + i \cdot \sin(\theta_1 + \theta_2) \right]$$
.

例 2 计算:
$$\sqrt{2}(\cos\frac{\pi}{12} + i \cdot \sin\frac{\pi}{12}) \cdot \sqrt{3}(\cos\frac{\pi}{6} + i \cdot \sin\frac{\pi}{6})$$

解: 原式 =
$$\sqrt{2} \cdot \sqrt{3} \cdot \left[\cos\left(\frac{\pi}{12} + \frac{\pi}{6}\right) + \sin\left(\frac{\pi}{12} + \frac{\pi}{6}\right) i\right]$$

= $\sqrt{3} + \sqrt{3}i$

(2) 除法:
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \cdot \sin(\theta_1 - \theta_2) \right]$$

例 3 计算:
$$\frac{4(\cos\frac{4}{3}\pi + i \cdot \sin\frac{4}{3}\pi)}{2(\cos\frac{5}{6}\pi + i \cdot \sin\frac{5}{6}\pi)}$$

解: 原式 =
$$\frac{4}{2} \left[\cos \left(\frac{4}{3} \pi - \frac{5}{6} \pi \right) + i \cdot \sin \left(\frac{4}{3} \pi - \frac{5}{6} \pi \right) \right]$$

= $2i$

(3) 乘方: 设 $z = r(\cos\theta + i \cdot \sin\theta)$

则: $z^n = r^n(\cos n\theta + i \cdot \sin n\theta)$

例 4: 计算: $(\sqrt{3} - i)^6$

解: 原式 =
$$\left[2\left(\cos\frac{11}{6}\pi + i \cdot \sin\frac{11}{6}\pi\right)\right]^6$$

= $2^6(-1) = -64$:

练习: 计算(1-i)8

(4) 开方: 设 $z = r(\cos\theta + i \cdot \sin\theta)$

$$\text{MJ}: \sqrt[n]{z} = \sqrt[n]{r} (\cos \frac{2k\pi + \theta}{n} + i \cdot \sin \frac{2k\pi + \theta}{n}) \qquad k = 0, 1, 2, \dots, n-1.$$

例5 求1-*i*的立方根.

解:
$$1 - i = \sqrt{2}(\cos \frac{7}{4}\pi + i \cdot \sin \frac{7}{4}\pi)$$

$$\sqrt[3]{1-i} = \sqrt[6]{2} \left(\cos\frac{8k\pi + 7\pi}{12} + i \cdot \sin\frac{8k\pi + 7\pi}{12}\right)$$

$$= \sqrt[6]{2} (\cos \frac{2k\pi + \frac{7}{4}\pi}{3} + i \cdot \sin \frac{2k\pi + \frac{7}{4}\pi}{3}) \not \ddagger + k = 0, 1, 2$$

练习: 设 a > 0, 求 -a 的平方根.

习题三

1. 把下列复数形式表示为三角形式:

$$(1) \frac{\sqrt{3}}{2} - \frac{1}{2}i \qquad (2) 3 - 4i \qquad (3) 2i \qquad (4) -1 - \sqrt{3}i$$

2. 把下列复数形式表示为代数形式:

$$(1) \ 8(\cos\frac{11}{6}\pi + i \cdot \sin\frac{11}{6}\pi)$$
 (2) $9(\cos\frac{7}{6}\pi + i \cdot \sin\frac{7}{6}\pi)$

$$(3) 6(\cos \frac{4}{3}\pi + i \cdot \sin \frac{4}{3}\pi)$$

3. 计算:

$$(1) \ 3(\cos \frac{\pi}{3} + i \cdot \sin \frac{\pi}{3}) \cdot 3(\cos \frac{\pi}{6} + i \cdot \sin \frac{\pi}{6})$$

 $(2) (\cos 75^{\circ} + i \sin 75^{\circ}) \cdot (\cos 15^{\circ} + i \sin 15^{\circ})$

$$(3) (1-i) (-\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{7}$$
 (4) (-1-i)⁶

$$(5) \frac{10(\cos\frac{2}{3}\pi + i \cdot \sin\frac{2}{3}\pi)}{5(\cos\frac{\pi}{3} + i \cdot \sin\frac{\pi}{3})}$$

4. 已知
$$z = \frac{(4-3i)^2(-1+\sqrt{3}i)^{10}}{(1-i)^{12}}$$
,求 | z | .

§4 复数的指数形式及指数形式的运算

三角形式运算方便,但计算量大的同时地使书写比较麻烦,为此,再提供一种复数的书写形式,指数形式.

1. 复数指数形式的概念

若
$$z = r(\cos\theta + i \cdot \sin\theta)$$
 为三角形式,

$$\Leftrightarrow \cos\theta + i \cdot \sin\theta = e^{i\theta}$$

则:z可表示为: $z = r \cdot e^{i\theta}$ 称为复数的指数形式.

2. 复数指数形式的转化

例题 将下列复数转化为指数形式:

$$(1) z = -\sqrt{12} - 2i$$

$$(2) \sin \frac{\pi}{5} + i \cdot \cos \frac{\pi}{5}$$

解: (1)
$$r = |z| = \sqrt{12 + 4} = 4$$

$$\overrightarrow{\text{III}} \operatorname{tg} \theta = \frac{-2}{-\sqrt{12}} = \frac{\sqrt{3}}{3}, \ \therefore \ \theta = \frac{\pi}{6}$$

而 z 在第三象限,故:
$$\arg z = \frac{7}{6}\pi$$

$$\therefore z = 4\left(\cos\frac{7}{6}\pi + i \cdot \sin\frac{7}{6}\pi\right) = 4e^{\frac{7\pi}{6}i}$$

$$(2) z = \sin \frac{\pi}{5} + i \cdot \cos \frac{\pi}{5}$$

$$= \cos \left(\frac{\pi}{2} - \frac{\pi}{5}\right) + i \cdot \sin \left(\frac{\pi}{2} - \frac{\pi}{5}\right)$$

$$= \cos \frac{3}{10}\pi + i \cdot \sin \frac{3}{10}\pi$$

$$= a^{\frac{3}{10}\pi i}$$

有了指数形式,使三角形式的运算更简单.

设
$$z_1 = r_1(\cos\theta_1 + i \cdot \sin\theta_1)$$
; $z_2 = r_2(\cos\theta_2 + i \cdot \sin\theta_2)$.

对应的指数形式为: $z_1 = r_1 e^{i\theta_1}$; $z_2 = r_2 e^{i\theta_2}$

$$\mathbb{I}$$
: $(1)z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

$$2\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

$$\widehat{3}z^n = r^n e^{n\theta i}$$

$$4\sqrt[n]{z} = \sqrt[n]{r}e^{\frac{2k\pi + \theta}{n}i}, k = 0, 1, \dots, n-1.$$

3. 利用复数解方程

①形如 $ax^2 + bx + c = 0$ 的实系数—元二次方程.

若
$$ax^2 + bx + c = 0$$
, $a, b, c \in R$

则: $\Delta > 0$,方程有两个不等实根;

$$\Delta = 0$$
,方程有两个相等实根;