
化 学

本书编写组 编写

出版社

化 学

本书编写组 编写

内容提要

本书根据上海市高中学业水平考试化学学科要求而编写,紧密配合《高中化学学科教学基本要求》及《化学学科教学基本要求补充说明》两书内容。全书共分三个部分。第一部分为课程内容复习,共有6个单元,每个单元包括知识梳理、典型例题和习题与自我测试卷三个方面。第二部分为6套模拟试卷。第三部分是所有练习和模拟试卷的参考答案,以便读者练习后检验。本书可供上海市高中学生参加高中学业水平考试复习时参考。

上海市的课程教学改革已经进入到了关键时期,在"多元诉求、减负增效、速效优质"的呼唤下,高中教学正逐步从"专业对话"转变为"有效教学","关注学生的全面发展,关注学生的学习方式,关注学生的智能类型和生活经验,关注学生的处境和感受"则成为强调和评价教学有效性的出发点与落脚点。教学评估作为检验改革是否取得成效的关键环节之一,已然成为社会的焦点,于是,学业水平考试应运而生。

本书即为了方便高二学生参加化学学科学业水平考试复习训练而编写。本书 围绕化学课程标准,力图体现化学学习的知识、能力、态度、情感和价值观要求,强 调"精练、精析、精确",在试题编写过程中,充分注意到基础知识、基本技能、基本方 法等方面的整合;紧扣近年命题的题型,以考试内容为主线,对一些重点、难点以及 解题方法作了较为全面的指导并配有一定的练习,试图基本覆盖本学科考试说明 涵盖的所有知识点和能力要求。

本丛书编写组成员均为复旦大学附属中学、上海交通大学附属中学、上海外国语大学附属外国语学校、复兴高级中学、杨浦高级中学等名校从事多年化学教学一线工作的骨干教师和专家。本书编者具有丰富的化学教学经验,这保证了试题编制的质量和指导性,尤其对同学节约时间、少走弯路、提高复习效率有直接帮助。

本书在编写过程中,得到了不少热心专家的指导和关心,在此表示谢意。限于编者水平和时间,书中难免有不足或瑕疵,还请诸位读者不吝赐教。

目 录

第一	·单元	物质的微观世界及化学基本概念	1
	第一节	原子结构	1
	第二节	化学键	4
	自我测	试卷(一)	6
第二	单元	物质的变化及其规律 ··············· 1	0
	第一节	能量的转化和利用	0
	第二节	化学反应速率与化学平衡	2
	第三节	元素周期律	0
	第四节	电解质溶液	7
	第五节	氧化还原反应	2
	自我测	试卷(二)	9
第三	单元	一些元素的单质和化合物 $\cdots\cdots\cdots$ $_4$	4
	第一节	卤素	4
	第二节	氧族元素	0
	第三节	氦族元素	8
	第四节	铁	2
	第五节	铝	7
	自我测	试卷(三)	2
第四	单元	有机化合物 ······· 7	6
	第一节	有机化学的基本概念 7	6
	第二节	有机物的组成、结构、性质和合成 8	0
	自我测	试卷(四) 8	7
第五	单元 '	化学实验 9	2
	第一节	物质的制备 9	2
	第二节	常见物质的分离、提纯和检验 10	1
	第三节	定量实验 10	7

自我测试卷(五) ………………………………………………………… 113 第六单元 化学计算 ………………………………………… 120 第一节 物质的量计算 …………………………… 120 第二节 有关化学式的计算 ……………………… 123 第三节 应用化学方程式的计算 ………………… 126 模拟试题 — ……………………………………………… 130 模拟试题二 ………………………… 135 模拟试题三 …………………………………………… 141 模拟试题五 ……………………………………………… 150 模拟试题六 ………………………… 155 参考答案及解析 …………………………………… 161

第一单元 物质的微观世界及化学基本概念

第一节 原子结构

知识梳理】

- 1. 原子核
- (1) 原子的组成及各微粒间的关系

 ^{2}X 的含义:代表一个质量数为 A,质子数为 Z,中子数为(A-Z)的原子。

质量数(A) = 质子数(Z) + 中子数(N)。

质子数=核电荷数=核外电子数=原子序数。

原子由原子核和核外电子组成,从空间体积看原子核只占原子体积的几千亿分之一。原子核的体积虽小,但原子的质量几乎全集中在原子核上。质子和中子的相对质量都近似为1,电子的质量很小,仅约为质子质量的1/1836。

(2) 人类对原子结构认识的发展

古代朴素的原子观→英国科学家道尔顿的近代原子学说→英国科学家汤姆生的葡萄干面包原子模型→英国科学家卢瑟福的行星原子模型→玻尔假设。

(3) 同位素

具有相同质子数而中子数不同的同一元素的各种原子互称同位素。例如:H,D,T。

- (4) 元素的平均相对原子质量
- ① 原子的相对原子质量= $\frac{- \text{个原子的质量}}{1 \, \text{\cap}^{12}\text{C 原子质量} \text{0} \frac{1}{12}}.$
- ② 元素的相对原子质量:按各种天然同位素在该元素中原子个数百分数计算求得的平均相对原子质量。

$$\overline{A}_r = A_1 \cdot x_1 + A_2 \cdot x_2 + \cdots + A_n \cdot x_n$$

其中: A_1 ,…, A_n 是各种同位素的相对原子质量; x_1 ,…, x_n 是指各种同位素的天然原子百分比。若 A_1 ,…, A_n 是各种同位素的质量数,则计算的是近似相对原子质量,而它是最常用的。

- 2. 原子核外电子排布规律
- (1) 电子运动的特征:高速,空间小,无确定轨迹。

描述方式:电子云。

(2) 分层排布

直击A级 —— 高中学业水平考试

代号:K L M N O P Q··· 层序:1 2 3 5 6 4

电子离核渐远,能量逐渐升高

- (3) 排布规律
- ① 每层最多容纳 $2n^2$ 个电子(n 表示第几层)。
- ② 最外电子层不能超过 8 个,次外层不能超过 18 个,倒数第三层不能超过 32 个。
- ③ 遵循能量最低原理:电子首先排满能量低的电子层,然后再排能量高的电子层。即先排 满 K 层,再排 L 层,再排 M 层等。

以上三条规律不是孤立的,而是相互制约的,必须同时满足。

- 3. 核外电子排布的表示方法
- (1) 1~18 号元素原子(简单离子)结构示意图。
- (2) 电子式的含义及书写。
- (3) 简单离子、氢氧根离子和铵根离子的电子式。

典型例题】

- **例 1.** ¹⁸ C NMR(核磁共振)可以用于碳化合物的结构分析, ¹⁸ C 表示的碳原子()。
- A. 核外有 13 个电子,其中 6 个能参与成键
- B. 核内有 6 个质子,核外有 7 个电子
- C. 质量数为13,原子序数为6,核内有7个质子
- D. 质量数为13,原子序数为6,核内有7个中子

解析: 13C 是12C 的一种同位素,同位素之间的化学性质几乎完全相似。13C 的含义是表示质 子数是 6,质量数为 13 的一个碳原子,其中子数为 7,核外有 6 个电子,其中最外层的 4 个电子为 价电子,这4个电子都可参与成键。综上所述,只有D项正确。答案:D。

例 2. 在第 n 电子层中,当它作为原子的最外电子层时,容纳电子数最多与(n-1)层相同;当 它作为原子的次外层时,其电子数比(n+1)层最多时还多 10 个,则此电子层是(

B. L层

C. M 层

解析:n作为最外层时,最多只能容纳8个电子,所以(n-1)层电子数应为8个,即L层;n为次外 层时,则第(n+1)层为最外层,故次外层容纳的电子数为8+10=18,进一步证明n层为M层。答案:C。

例 3. 金属钛对人体体液无毒且有惰性,能与肌肉和骨骼生长在一起,有"生物金属"之称。 下列有关器 Ti 和器 Ti 的说法中正确的是(

- A. 製Ti 和製Ti 的质量数相同,互称为同位素
- B. 48 Ti 和50 Ti 的质子数相同,互称为同位素
- C. ⁴⁸ Ti 和⁵⁰ Ti 的质子数相同,是同一种核素
- D. 48 Ti 和22 Ti 核外电子数相同,中子数不同,不能互称为同位素

解析:同位素的质子数和电子数相等,核外电子排布相同,中子数和质量数不相等。\$\$Ti 和 50 Ti 的质子数均为 22,中子数分别为 26 和 28。答案:B。

习题 1-1

1. 据科学家预测,月球的土壤中吸附着数百万吨的³He,每百吨³He 核聚变所释放出的能量

相当于目前人类一年消耗的能量。在地球上,氦元素主要以⁴He 的形式存在。下列说法中正确 的是()。

- A. ⁴He 原子核内含有 4 个质子
- B. ³He 和⁴He 互为同位素
- C. 3He 原子核内含有 3 个中子
- D. ⁴He 的最外层电子数为 2,故⁴He 具有较强的金属性
- 2. 下列各项表达中不正确的是(

A. H₂O 的分子模型示意图: H O H

- C. 氯化铵的电子式:[H:N:H]+[:Cl:]- D. F-的结构示意图:(+9)27
- 3. 原子核内有 6 个质子和 6 个中子的碳原子的质量是 1.993×10^{-26} kg, 某种原子的质量是 9. 288×10^{-26} kg,则该原子的相对原子质量是()。
 - A. 9.288/1.993

B. $1.993 \times 12/9.288$

B. 氢氧化钠的电子式:Na⁺[:O:H]⁻

C. $12 \times 9.288/1.993$

D. $9.288 \times 12/1.993$

- 4. R^{n+} 离子有 m 个电子,它的质量数为 A,则原子核内的中子数为()。
- A. m+n
- B. A-m+n C. A-m-n D. A+m-n
- 5. 已知氯元素有³⁵ Cl 和³⁷ Cl 两种核素,氢元素有 H, D 和 T 三种核素,则它们所形成的氯化 氢分子共有()。
 - A. 3 种
- B.6种
- C. 9种
- D. 12 种
- 6. 已知 $_aA^{m+}$ 与 $_bB^{n-}$ 具有相同的核外电子排布,则下列关系中正确的是()。

- A. a = b + m + n B. a = b m + n C. a = b + m n D. a = b m n
- 7. 某金属氧化物的化学式为 M_2O_3 ,电子总数为 50,已知氧原子核内有 8 个中子, M_2O_3 的 相对分子质量为 102,则 M 原子核内中子数为()。
 - A. 10
- B. 12
- C. 14
- D. 21

8. 填写下表中的空格:

微粒符号	质子数	中子数	电子数	质量数
(1) 40 K				
(2)	18	20		
(3)		16	18	32

- 9. (1)1 mol NH₃ 中所含质子数与 mol H₂O, mol HF 中所含质子数 相等。
 - (2) 和 Ne 原子具有相同电子数和质子数的多核微粒有
- 10. (1) α 射线由 α 粒子组成, α 粒子是一种没有核外电子的粒子, 它带有 2 个单位的正电 荷,它的质量数等于4,由此可推断α粒子含有 个质子, 个中子。
 - (2) 已知针 236 Th 的原子可发生下列放射性变化: 236 Th \longrightarrow R+ α ,则 R 原子中所含质子数为 ,中子数为。

第二节 化 学

知识梳理】

- 1. 化学键
- (1) 化学键的定义:相邻的原子之间强烈的相互作用叫作化学键。
- (2) 离子键、共价键及金属键的代表物质。
- (3) 离子键和共价键的比较

类型	离子键	共 价 键		
矢型	两 丁 链	极性键	非极性键	
作用方式	阴阳离子间的静电作用	原子间共用电子对的静电作用		
存在于微粒	阴阳离子之间	不同的非金属元素 同种非金属元素之间		
一般规律	活泼的金属元素(IA, IIA)与活泼的非金属元素(VIA, VIIA)之间形成	非金属元素之间形成		
典型物质	NaCl, Na ₂ O	HCl	H_2	

- 2. 用电子式表示离子键、共价键形成的物质。如:
- (1) $2Na \cdot + \cdot S \cdot \longrightarrow Na^{+} [:S:]^{2-}Na^{+}$
- (2) $2H \cdot + \cdot 0 \cdot \longrightarrow H:0:H_{\circ}$

2 典型例题】

例1. 下列叙述中正确的是()。

- A. 两种非金属原子间不可能形成离子键 B. 非金属原子间不可能形成离子化合物
- C. 离子化合物中可能有共价键
- D. 共价化合物中可能有离子键

解析:两种非金属原子间不能得失电子,不能形成离子键,A对;非金属原子,当组成原子团 时,可以形成离子化合物,如 NH₄Cl, B 错;离子化合物中可以有共价键,如 NaOH 中的 O—H 键,C对;有离子键就是离子化合物,D错。答案:A,C。

例 2. 以下叙述中错误的是()。

- A. 钠原子与氯气反应生成食盐后,其结构的稳定性增强
- B. 在氧化钠中,除氧离子和钠离子的静电吸引作用外,还存在电子与电子、原子核与原子核 之间的排斥作用
 - C. 任何离子键在形成过程中必定有电子的得与失
 - D. 钠与氧气反应生成氧化钠后,体系的能量降低

解析:钠原子最外层只有1个电子,当它失去1个电子后可以形成8个电子的稳定结构,使 体系的能量降低,所以 A, D 项均正确:在离子化合物中除阴阳离子电荷之间的静电引力外,还

存在电子与电子、原子核与原子核之间的排斥作用,所以 B 项正确;一般说来,形成离子键有电子的得失,但也有例外,如铵盐的形成。答案: C。

■ 习题 1—2】	
合力,释放出氢原子,点火后氢原子就能持续燃烧。 A. 非极性键 B. 极性键 2. 下列过程中化学键被破坏的是()。	
于水 ⑥ NaCl 熔化	f] 水 · · · · · · · · · · · · · · · · · ·
A. 全部	B. 23456
C. 456	D. \$6
3. 在共价化合物中,元素化合价有正负的根本	
A. 有电子得失	· 小口足()。
B. 共用电子对有偏移	
C. 既有电子对偏移又有电子得失	
D. 非金属元素的原子吸引电子的能力存在差	· 别
	-^, 成这一事实,下列变化中不属于化学变化的是
().	
	B. NaCl 在高温下熔化
C. 石墨在高温、高压下转化为金刚石	
5. 下列变化中,不需要破坏化学键的是()。
A. 氯化氢溶于水	B. 加热氯酸钾使其分解
C. 碘升华	D. 氯化钠溶于水
6. 下列叙述中正确的是()。	
A. 只有活泼金属与活泼非金属之间才能形成	(离子键
B. 具有共价键的化合物是共价化合物	
C. 具有离子键的化合物是离子化合物	
D. 化学键是分子中多个原子之间强烈的相互	作用
7. 现有① BaCl ₂ , ② 金刚石, ③ NH ₄ Cl,	④ Na ₂ SO ₄ , ⑤ 干冰, ⑥ 碘片六种物质,
按要求回答(用序号回答):	
(1) 熔化时不需要破坏化学键的是,	熔化时需要破坏共价键的是,熔点最
高的是,熔点最低的是。	
(2) 属于离子化合物的是,只有离子	键的物质是,晶体以分子间作用力结
合的是。	
(3) ①的电子式是	_,⑤的电子式是。

 $\textcircled{1} \hspace{0.1cm} CaBr_2 \hspace{0.1cm} \textcircled{2} \hspace{0.1cm} H_2O \hspace{0.1cm} \textcircled{3} \hspace{0.1cm} NH_4Cl \hspace{0.1cm} \textcircled{4} \hspace{0.1cm} H_2O_2 \hspace{0.1cm} \textcircled{5} \hspace{0.1cm} Na_2O_2 \hspace{0.1cm} \textcircled{6} \hspace{0.1cm} Ca(OH)_2 \hspace{0.1cm} \textcircled{7} \hspace{0.1cm} HClO \hspace{0.1cm} \textcircled{8} \hspace{0.1cm} \textbf{I}_2$

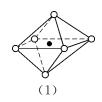
8. 根据要求回答下列问题(用序号回答):

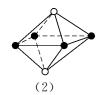
(1) 只含有离子键的是____。

1		
2	111	1

(2) 含有共价键的离子化合物是。	
(3) 含有共价键的共价化合物是。	
(4) 常温时为固体,当其熔化时,不破坏化学	建的是。
(5) 熔融状态时和固态时,都能导电的有	•
9. 写出下列物质的电子式	
H_2O_1 CaCl ₂ : Na ₂ O ₂ : Na ₂ O ₃ :	OH^- : CH_3^- :
用电子式表示 Na ₂ S 的形成过程:	
种物质中,请用编号填空:	
只含有离子键的是,只含有共价键且	1为直线型分子的是,空间构型为正四
面体结构的分子是,熔点最高的是	
自我测试	[卷 ←)
一、选择题(每小题有1个选项符合题意)	
1. 据报道,上海某医院正在研究用放射性同	位素碘1551治疗肿瘤。该同位素原子核内的中
子数是()。	
A. 72 B. 19	C. 53 D. 125
2. 以下化学用语中正确的是()。	
A. 乙烯的最简式 C ₂ H ₄	B. 乙醇的结构简式 C ₂ H ₆ O
Cl	
C.四氯化碳的电子式 Cl : C: Cl Cl	D. 臭氧的分子式 O ₃
3. 下列物质名称所指为纯净物的是()。	
A. 汽油 B. 天然气	C. 煤 D. 苯
4. 2007年10月24日,我国在西昌卫星发射	中心用长征三号甲运载火箭将"嫦娥一号"卫星
成功送入太空。人类探月的重要目的是勘察、获取	以地球上蕴藏量很少而在月球上却极为丰富的
核聚变燃料 ³ He 以解决地球能源危机。以下关于	He 的叙述中正确的是()。
A. 含有 3 个质子,没有中子	B.和 He-4 性质完全相同
C. 比 He-4 性质活泼	D. 是 He-4 的同位素
5. 在物质结构研究的历史上,首先提出原子	内有电子的学说的是()。
A. 道尔顿 B. 卢瑟福	C. 汤姆生 D. 玻尔
6. 下列关于晶体的说法中正确的是()。	
A. 任何晶体中,若含有阳离子就一定有阴离	子
B. 原子晶体中只含有共价键	
C. 原子晶体的熔点一定比金属晶体的高	
D. 离子晶体中只含有离子键,不含有共价键	
7. 下列晶体的熔点由低到高的顺序排列正确	的是()。
① 金刚石 ② 氯化钠 ③ 干	冰 ④ 汞
A. 4231	B. 3124
C. 4213	D. 3421

- 8. 下列几组顺序排列不正确的是()。
- A. 沸点高低: HI > HBr > HCl > HF
- B. 热稳定性大小: HF > H₂O > NH₃ > PH₃
- C. 熔点高低: 金刚石 > 食盐 > 金属钠 > 冰
- D. 微粒半径大小: S²⁻ > Cl⁻ > F⁻ > Na⁺ > Al³⁺
- 9. 有下列离子晶体的空间结构示意图。图中●和化学式中 M 分别代表阳离子,图中○和化学式中 N 分别代表阴离子,则化学式为 MN。的晶体结构为()。





- 10. 通过复习总结,你认为下列说法中对化学知识概括合理的是()。
- A. 物质中只要有阴离子存在就一定存在阳离子,有阳离子存在也一定有阴离子
- B. 一种元素可能有多种氧化物,但同种化合价只对应一种氧化物
- C. 原子晶体、离子晶体、金属晶体、分子晶体中都一定存在化学键
- D. 原子晶体的熔点不一定比金属晶体的高,分子晶体的熔点不一定比金属晶体的低
- 11. 下列图像是从 NaCl 或 CsCl 晶体结构图中分割出来的部分结构图,试判断属于 NaCl 晶体结构的图像是()。

- A. 图(1)和图(3)
- B. 图(2)和图(3)
- C. 只有图(1)
- D. 图(1)和图(4)
- 12. 下列各组物质中,化学键类型相同,晶体类型也相同的是()。
- A. CH₄和 H₂O
- B. KCl和 HCl
- C. Cl₂和 KCl
- D. SiO₂和CO₂

- 13. 下列晶体熔化时不需破坏化学键的是()。
- A. 晶体硅
- B. 食盐
- C. 干冰
- D. 金属钾
- 14. 下列晶体中,其中任何一个原子都被相邻四个原子包围,以共价键形成正四面体,并向空间伸展成网状结构的是()。
 - A. 四氯化碳
- B. 石墨
- C. 金刚石
- D. 水晶
- 15. 有某微粒ARn+,下列关于该微粒的叙述中正确的是()。
- A. 所含质子数 = A n

B. 所含中子数 = A - Z

C. 所含电子数 = Z + n

- D. 所含质子数 = A + Z
- 16. 下列叙述中,正确的是()。
- A. 两种微粒,若核外电子排布完全相同,则其化学性质一定相同
- B. 凡单原子形成的离子,一定具有稀有气体元素原子的核外电子排布
- C. 两微粒,如果核外电子排布相同,则一定属于同种元素
- D. 不存在两种质子数和电子数均相同的阳离子和阴离子

直击A级——高中学业水平考试

The same of the sa				
	17. 下列分子中,行	含有非极性键的化合	物是()。	
	A. HD	$B. CO_2$	$C. H_2O$	D. C_2H_5OH
	18. 下列叙述中正	确的是()。		
	A. 两种元素构成	的共价化合物分子中	的化学键都是极性键	
	B. 两种不同的非	金属元素原子间形成	的化学键都是极性键	
	C. 含有非极性键	的化合物分子一定不	是极性分子	
	D. 只要是离子化	合物,其熔点就比共作	价化合物的熔点高	
	19. 共价键、离子银	建、金属键、分子间作	用力都是微粒间的作用	力,含有以上两种作用力的晶
12	体是()。			
	A. 二氧化硅	B.钠	C. 氯化钠	D. 氢氧化钠
	20. 设某元素原子	核内的质子数为 m ,	中子数为 n,则下列论图	f中正确的是()。
	A. 不能由此确定	该元素的相对原子质	這量	
	B. 这种元素的相	对原子质量为 m+n		
	C. 若碳原子的质	量为 w g,此原子的质	5量为 (m+n)w g	
	D. 核内中子的总	质量小于质子总质量		
	21. 下列每组物质	发生状态变化所克肌	及微粒间的相互作用属	于同种类型的是()。
	A. 食盐和蔗糖熔	化	B. 钠和硫熔化	L
	C. 碘和干冰升华		D. 二氧化硅和	口氯化钠熔化
	22. 下列分子中所	有原子都满足最外层	层 8 电子结构的是()。
	A. 光气(COCl ₂)		B. 六氟化硫	
	C. 二氟化氙		D. 三氟化硼	
	23. 下列物质的熔	点、沸点高低顺序正	确的是()。	
	A. 金钢石 $>$ 晶体	x硅 > 二氧化硅 > ₹	炭化硅 B. CBr ₄ > CC	$\mathrm{Cl_4}>\mathrm{CH_4}$
	C. $HgO > H_2O$	$>$ $\mathrm{O}_{\scriptscriptstyle 2}$ $>$ $\mathrm{N}_{\scriptscriptstyle 2}$	D. 金钢石 >:	生铁 > 纯铁 > 钠
	24. 目前,科学界持	以合成一种"二重构造	步"的球型分子,即把"足	是球型"的 C₀₀溶进"足球型"的
S	i ₆₀ 分子中,外面的硅原	(子与里面的碳原子)	以共价键结合。下列关	于这种分子的说法中不正确的
Ę	륃()。			
	A. 是一种新型的	化合物	B. 晶体属于5	分子晶体
	C. 是两种单质组	成的混合物	D. 相对分子质	适量为 2 400
	25. 由 Na, Mg, A	Al, Zn 四种金属单质	中的两种组成的混合物	勿共 12 g,跟足量盐酸反应,产
_	上 5.6 L H ₂ (标准状况),由此判断混合物中		
	A. Na	B. Mg	C. Al	D. Zn
	二、填空题			
	26. 下图分别是 N	iaCl, CsCl,干冰,金M	列石,石墨的晶体结构中	中某一种的某一部分:
	A	В	C D	Е
	(1) 其中代表金刚	石的是(填编号字母	,下同),其中4	每个碳原子与个碳原

子最接边	近且距离相等。金钢石属	于晶体。			
(2)	其中代表石墨的是	,其中每个正	六边形占有的碳	是原子数平均为_	个。
(3)	其中代表 NaCl 的是	,每个 Na ⁺ 周[围与它最接近且跳	巨离相等的 Na ⁺ 有	ī个。
(4)	代表 CsCl 的是	_,它属于	_晶体,每个 Cs ⁺	与个(Cl⁻紧邻。
(5)	代表干冰的是	,它属于	晶体,每个 CO ₂	分子与	个 CO ₂ 分子
紧邻。					
(6)	上述五种物质中熔点由	高到低的顺序是_	;其中在		能导电的电解
质是	,在水溶液中能导电	电的非电解质是_	•		
27.	下列7种物质: ① P ₄ (白磷), ② SiO ₂	, ③ NH ₄ Cl,	④ Ca(OH) ₂ ,	⑤ NaF,
⑥ Na ₂ (O ₂ , ⑦ 石墨,固态下都为	为晶体,回答下列的	可题(填写化学式	;):	
(1)	不含金属离子的离子晶	体是,只	含离子键的离子	·晶体是	_,既有离子键
又有非构	汲性键的离子晶体是	,既有离子键	又有极性键的离	哥子晶体是	· ·
(2)	既含范德华力,又有非极情	性键的晶体是	,熔化时只需	克服范德华力的	是,熔
化时既到	要克服范德华力,又要破坏	不化学键的是	,熔化时只	破坏共价键的是	o
28.	在金属晶体中	层层紧密堆积着	,金属原子容易变	变成,释	出的
成为	与	之间存	在着,	因而使许多	相互结合
在一起开	形成晶体。				
29.	在元素周期表中第三周	期元素组成的单质	5中,属于金属晶	体的是	_,属于原子晶
体的是	,属于分子晶体	的是;	其中熔点最高的	勺是,	熔点最低的是
	;离子半径最小的是	,还原性最强	虽的是	,氧化性最强的是	킡。
三、	、计算题				
30.	已知氯元素的相对原子	质量为 35.5,由2	³ Na,³⁵ Cl 和³ ⁷ C	1 构成的 11.7 g	g NaCl 晶体中
含 ³⁵ Cl ⁻	质量是多少?含 ²³ Na ³⁷ Cl	的质量是多少?			

第二单元 物质的变化及其规律

第一节 能量的转化和利用

知识梳理】

1. 化学能与热能

化学反应的实质:化学键的断裂与形成。

断开化学键——吸收能量,形成化学键——放出能量。

化学反应的特征:有新物质生成,同时伴随着能量的变化。

- 一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于:反应物的总能量与生 成物的总能量的相对大小。
 - 2. 热化学方程式的含义

以反应 $C(\overline{B}) + O_2(\overline{C}) \longrightarrow CO_2 + 394 \text{ kJ}$ 为例,它表示 1 mol 固体 $C = 1 \text{ mol } O_2 = 1 \text{$ 化合生成 1 mol CO₂ 气体时放出 394 kJ 的热量。

注意:热化学方程式中各物质前边的系数只表示物质的量,而不代表几个分子或原子,所以 可以是分数。

3. 书写热化学方程式应注意的几点

因为反应热与参加反应的物质的多少有关,那么热量值必然与方程式中的系数有对应关系。 另外,热量值也与各物质的状态有关。因此,书写热化学方程式应注意:

- (1) 表示反应热的数值需写在方程式等号的右边,放热反应在热量前写"十"号,吸热反应写 "一"号。
 - (2) 必须在各物质的化学式后边注明各物质的聚集状态。
 - (3) 系数可以是分数。
 - 4. 根据热化学方程式计算
- 一般的化学方程式可表示各物质之间的质量关系、物质的量关系、相同状况下气体体积关 系。对于热化学方程式,除上述各关系外,还可表示上述各量与反应热的关系。
 - 5. 怎样比较反应热的大小
 - (1) 同一反应,生成物状态不同时

$$A(气)+B(气)\longrightarrow C(气)+Q_1$$

$$A(气)+B(气)\longrightarrow C(液)+Q_{\gamma}$$

因为 $C(\mathfrak{T})\longrightarrow C(\mathfrak{T})+Q_r$,则 $Q_r=Q_2-Q_1$,所以可以看出 $Q_2>Q_1$ 。

(2) 同一反应,反应物状态不同时

$$S(\xi) + O_2(\xi) \longrightarrow SO_2(\xi) + Q_1$$
 $S(B) + O_2(\xi) \longrightarrow SO_2(\xi) + Q_2$

$$S(B) + O_{o}(f) \longrightarrow SO_{o}(f) + O_{o}$$

$$S(\stackrel{\frown}{=}) \xrightarrow{Q_x} S(\stackrel{\frown}{=}) \xrightarrow{Q_2} SO_2(\stackrel{\frown}{=})$$

可以看出 $Q_1 = Q_x + Q_2$,则 $Q_1 > Q_2$ 。

6. 利用反应热判断物质的稳定性

物质内部所含的能量越低,则该物质越稳定。根据反应的热效应,可比较物质内能量的 高低。

典型例题】

例 1. 对于热化学方程式 $2H_2(气) + O_2(气) \longrightarrow 2H_2O(气) + 483.6 \text{ kJ}$,下列说法中正确的 是()。

- A. 氢气与氧气反应吸收热量 483.6 kJ
- B. 氢气燃烧反应的反应热为 483.6 kJ
- C. 2个 H。分子燃烧生成水蒸气,放出 483.6 kJ 热量
- D. 2 mol H₂ 与 1 mol O₂ 生成 2 mol 水蒸气,放出 483.6 kJ 热量

解析:在热化学方程式中,等号右边"+"号表示放热,所以A错。B选项也错,因"反应热"与"热量"是两个不同的概念。热化学方程式中各物质前面的"系数"只表示物质的量,不表示其他量,故C错。答案:D。

例 2. 在相同温度下,下列两个反应放出的热量分别用 Q_1 和 Q_2 表示,则 Q_1 和 Q_2 的关系是 ()。

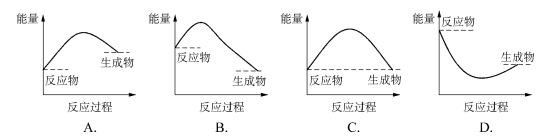
$$2H_2(气) + O_2(气) \longrightarrow 2H_2O(气) + Q_1$$

 $2H_2(气) + O_2(气) \longrightarrow 2H_2O(液) + Q_2$

A.
$$Q_1 = Q_2$$

B.
$$Q_1 > Q_2$$

$$C. Q_1 < Q_2$$


D.
$$2Q_2 = Q_1$$

解析:物质的聚集状态不同,放出或吸收的热量不同。水从气态到液态要放热。当物质由气态转变为液态时(水蒸气转变为液态水),分子间相互吸引力加强,要放出能量。答案:C。

习题 2-1】

1. 下列各图中,表示化学反应正反应是放热反应的是()。

2. 氢气在氯气中燃烧时产生苍白色火焰,反应过程中,破坏 1 mol 氢气中的化学键消耗的能量为 Q_1 kJ,破坏 1 mol 氯气中的化学键消耗的能量为 Q_2 kJ,形成 1 mol 氯化氢中的化学键释放的能量为 Q_3 kJ。下列关系式中正确的是()。