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Introduction

There is now a rich store of information on protein structure in var-
ious protein data banks. There is consensus that protein folding is
driven mainly by the hydrophobic effect. What is lacking, however, is
an understanding of specific physical principles governing the folding
process. It is the purpose of these lectures to address this problem
from the point of view of statistical physics. For background, the
first part of these lectures provides a concise but relatively complete
review of classical statistical mechanics and kinetic theory. The sec-
ond part deals with the main topic.

It is an empirical fact that proteins of very different amino acid
sequences share the same folded structure, a circumstance referred
to as “convergent evolution.” It other words, different initial states
evolve towards the same dynamical equilibrium. Such a phenomenon
is common in dissipative stochastic processes, as noted by C.C. Lin.!
Some examples are the establishment of homogeneous turbulence,
and the spiral structure of galaxies, which lead to the study of protein
folding as a dissipative stochastic processes, an approach developed
over the past year by the author in collaboration with Lin.

In our approach, we consider the energy balance that maintains
the folded state in a dynamical equilibrium. For a system with few
degrees of freedom, such as a Brownian particle, the balance between
energy input and dissipation is relatively simple, namely, they are
related through the fluctuation—dissipation theorem. In a system
with many length scales, as a protein molecule, the situation is
more complicated, and the input energy is dispersed among modes
with different length scales, before being dissipated. Thus, energy

!C.C. Lin (2003). On the evolution of applied mathematics, Acta Mech. Sin.
19 (2), 97-102.
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xii Introduction

flows through the system along many different possible paths. The
dynamical equilibrium is characterized by the most probable path.

e What is the source of the input energy?

The protein molecule folds in an aqueous solution, because of the
hydrophobic effect. It is “squeezed” into shape by a fluctuating net-
work of water molecules. If the water content is reduced, or if the
temperature is raised, the molecule would become a random coil.
The maintenance of the folded structure therefore requires constant
interaction between the protein molecule and the water net. Water
nets have vibrational frequencies of the order of 10 GHz. This lies
in the same range as those of the low vibrational modes of the pro-
tein molecule. Therefore, there is resonant transfer of energy from
the water network to the protein, in addition to the energy exchange
due to random impacts. When the temperature is sufficiently low,
the resonant transfer dominates over random energy exchange.

e How is the input energy dissipated?

The resonant energy transfer involves shape vibrations, and therefore
occurs at the largest length scales of the protein molecule. It is then
transferred to intermediate length scales through nonlinear couplings
of the vibrational modes, most of which are associated with internal
structures not exposed to the surface. There is thus little dissipa-
tion, until the energy is further dispersed down the ladder of length
scales, until it reaches the surface modes associated with loops, at
the smaller length scales of the molecule. Thus, there is energy cas-
cade, reminiscent of that in the Kolmogorov theory of fully developed
turbulence.

The energy cascade depends on the geometrical shape of the sys-
tem, and the cascade time changes during the folding process. We
conjecture that

The most probable folding path is that which minimizes the
cascade time.

This principle may not uniquely determine the folded structure, but
it would drive it towards a sort of “basin of attraction.” This would
provide a basis for convergent evolution, for the energy cascade blots
out memory of the initial configuration after a few steps. A simple
model in the Appendix illustrates this principle.



Introduction xiii

We shall begin with introductions to statistical methods, and
basic facts concerning protein folding. The energy cascade will be
discussed in the last two chapters.

For references on statistical physics, the reader may consult the
following textbooks by the author:

K. Huang, Introduction to Statistical Physics (Taylor & Francis,
London, 2001).

K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, New
York, 1987).
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Chapter 1

Entropy

1.1. Statistical Ensembles

The purpose of statistical methods is to calculate the probabilities
of occurrences of possible outcomes in a given process. We imagine
that the process is repeated a large number of times K. If a specific
outcome occurs p number of times, then its probability of occurrence
is defined as the limit of p/K, when K tends to infinity. In such
an experiment, the outcomes are typically distributed in the quali-
tative manner shown in Fig. 1.1, where the probability is peaked at
some average value, with a spread characterized by the width of the
distribution.

In statistical physics, our goal is to calculate the average values
of physical properties of a system, such as correlation functions. The
statistical approach is valid when fluctuations from average behav-
ior are small. For most physical systems encountered in daily life,

Average

v

) b Width

Number of occurrences
1
|

Outcome

Fig. 1.1. Relative probability distribution in an experiment.



2 Chapter 1. Entropy

fluctuations about average behavior are in fact small, due to the
large number of atoms involved. This accounts for the usefulness of
statistical methods in physics.

We calculate averages of physical quantities over a statistical
ensemble, which consists of states of the system with assigned prob-
abilities, chosen to best represent physical situations. By implement-
ing such methods, we are able to derive the law of thermodynamics,
and calculate thermodynamic properties, starting with an atomic
description of matter. Historically, our theories fall into the following
designations:

e Statistical mechanics, which deals with ensembles correspond-
ing to equilibrium conditions;

e Kinetic theory, which deals with time-dependent ensembles
that describe the approach to equilibrium.

Let us denote a possible state of a classical system by s. For
definiteness, think of a classical gas of N atoms, where the state of
each atom is specified by the set of momentum and position vectors
{p,r}. For the entire gas, s stand for all the momenta and positions
of all the N atoms, and the phase space is 6/ N-dimensional. The
dynamical evolution is governed by the Hamiltonian H(s), and may
be represented by a trajectory in phase space, as illustrated symboli-
cally in Fig. 1.2. The trajectory never intersects itself, since the solu-
tion to the equations of motion is unique, given initial conditions.

Fig. 1.2. Symbolic representation of a trajectory in phase space.



1.2. Microcanonical Ensemble and Entropy 3

It is exceedingly sensitive to initial conditions due to interactions.
Two points near each other will initially diverge from each other
exponentially in time, and the trajectory exhibits ergodic behavior:
Given sufficient time, it will come arbitrarily close to any accessible
point. After a short time, the trajectory becomes a spacing-filling
tangle, and we can consider this as a distribution of points. This dis-
tribution corresponds to a statistical ensemble, which will continue
to evolve towards an equilibrium ensemble.

There is a hierarchy of time scales, the shortest of which is set by
the collision time, the average time interval between two successive
atomic collisions, which is of the order of 1071°s under standard
conditions. Longer time scales are set by transport coefficients such
as viscosity. Thus, a gas with arbitrary initial condition is expected
to settle down to a state of local equilibrium in the order of 107105,
at which point a hydrodynamic description becomes valid. After a
longer time, depending on initial conditions, the gas finally approaches
a uniform equilibrium.

In the ensemble approach, we describe the distribution of points
in phase space by a density function p(s,t), which gives the relative
probability of finding the state s in the ensemble at time ¢. The
ensemble average of a physical quantity O(s) is then given by

_ 2:005)p(s: 1)
(0) = S (5. 0) (1.1)

where the sum over states s means integration over continuous
variables. The equilibrium ensemble is characterized by a time-
independent density function peq(s) = lim; p(s,t). Generally we
assume that peq(s) depends on s only through the Hamiltonian:

Peq(s) = p(H(s)).

1.2. Microcanonical Ensemble and Entropy

The simplest equilibrium ensemble is a collection of equally weighted
states, called the microcanonical ensemble. To be specific, consider an
isolated macroscopic system with conserved energy. We assume that
all states with the same energy E occur with equal probability. Other
parameters not explicitly mentioned, such as the number of particles
and volume, are considered fixed properties. The phase-space volume



