矿业与环境类专业实验教学丛书 邓衍义主编

采矿工程专业 实验指导书

肖广哲等 编著

江西高校出版社

采矿工程专业实验指导书

肖广哲等 编著

江西高校出版社

图书在版编目(CIP)数据

采矿工程专业实验指导书/肖广哲等编著. 一南昌: 江西高校出版社, 2010.7

(矿业与环境类专业实验教学丛书/邓衍义主编) ISBN 978-7-81132-994-0

I. ①采... Ⅱ. ①肖... Ⅲ. ①矿山开采 - 实验 - 高等学校 - 教学参考资料 Ⅳ. ①TD8 - 33

中国版本图书馆 CIP 数据核字(2010) 第 140061 号

出版发行	江西高校出版社
社 址	江西省南昌市洪都北大道96号
邮政编码	330046
总编室电话	(0791) 8504319
销售电话	(0791) 8508502
网 址	www. juacp. com
印 刷	南昌市光华印刷有限责任公司
照 排	江西太元科技有限公司照排部
经 销	各地新华书店
开 本	850mm × 1168mm 1/32
印 张	4.875
字数	110 千字
版 次	2010年10月第1版第1次印刷
印 数	1~1000 册
书号	ISBN 978 -7 -81132 -994 -0
定价	16.00 元

赣版权登字-07-2010-181

版权所有 侵权必究

前言

现代教育要求学生不仅要掌握一定的基础知识,而且还要培养和发展他们的智力和能力。如:学生动手操作能力、观察能力、创造性思维能力、科学研究能力以及记录和描述现象的能力、数据处理的技巧能力等等,都是在学生掌握知识的过程中逐步形成和提高的。而实验教学则是形成各种能力最有效的手段之一。显然实验教学指导书在实验教学中具有无可替代的作用。

根据教育部有关建立"高校实验教学示范中心"的标准,结合培养"应用型、复合型"的人才培养目标,通过对教学实验内容、课程体系、教学方法的更新,对教学设备和教学条件的进一步整合和优化,提高学生工程实践能力,培养适应新世纪国家经济建设与社会发展需要的、具有竞争能力的高素质工程专业人才,急需完善包括实验教材在内的各项建设。《矿业与环境类专业实验教学丛书》紧跟时代发展进行编写,包括《采矿工程专业实验指导书》、《矿物加工工程专业实验指导书》、《安全工程专业实验指导书》、《环境工程专业实验指导书》、《环境工程专业实验指导书》、《环境工程专业实验指导书》、《环境工程专业实验指导书》四个分册。适合相关专业本科学生、工程技术培训学员阅读,同时也可作为相关专业研究生的参考读物。在内容上图文并茂,通俗易懂,强调实用性与可操作性。丛书各分册作者具有多年的教学经验,且负责实验教学管理工作,从而使图书的内容更符合教学大纲,满足学生的实际需求。

本书是《矿业与环境类专业实验教学丛书》之一,分为九章,主要内容是地质学基础、岩石力学、爆破工程、金属矿床地下开采、金属矿床露天开采、矿井通风与防尘、岩土工程测试、充填理论和放矿理论。

本书参撰人员有吴开兴撰写了第1章,何国强撰写了第2章,中 国生撰写了第3章,杨国春撰写了第5章,朱建新撰写了第6章,游 安弼撰写了第7章,王晓军撰写了第8章,江小华撰写了第9章。

本书可供从事采矿工程专业高职、本科生和研究生参考使用,也 可供安全工程、土木工程等相关专业学习参考。

本书在撰写过程中参考了一些优秀的教材,甚至直接引用他们的一些经典论述,在此表示诚挚的感谢!

由于编写时间仓促,加之编者水平有限,书中难免会有疏漏和不足之处,恳请同行及读者批评指正。

肖广哲 2010 年 8 月

目 录

第一	-章	地质学基础
	1.1	概述
	1.2	常见矿物的肉眼鉴定
	1.3	常见岩石的肉眼鉴定 10
	1.4	地形地质图、剖面图的阅读和制作 24
	1.5	矿块三面图的读图及绘制 30
第二	章	岩石力学38
	2.1	概述
	2.2	岩石容重的测定40
	2.3	岩石含水率的测定42
	2.4	岩石单向抗压强度的测定 43
	2.5	岩石变形参数的测定44
	2.6	岩石抗拉强度的测定(劈裂法) 47
	2.7	点荷载强度指标的测定 49
	2.8	岩石的抗剪实验 52
第三	章	爆破工程
	3.1	概述 54
	3.2	炸药的爆炸冲能感度测定 56
	3.3	铅铸法爆力测定(或特劳茨法)58
	3.4	炸药猛度测定(霍氏试验法) 61
	3.5	雷管击穿铅板实验 63

3.6	电雷管参数测定	64
3.7	导爆管、炸药、导爆索的爆速测定	
第四章	金属矿床地下开采	
4.1	概述	
4.2	开拓系统	
4.3	采场底部结构	
4.4	空场采矿法	
4.5	崩落采矿法	
4.6	充填采矿法	
第五章	金属矿床露天开采	
5.1	概述	
5.2	露天采矿场	
5.3	开采境界	
5.4	露天矿床开拓	
5.5	采剥进度计划	
5.6	露天矿总图布置	
第六章	充填理论基础	
6.1	概述	
6.2	充填料的粒级组成测定	
6.3	充填料渗透系数的测定	
6.4	压缩试验	
6.5	充填料抗剪强度测定	
6.6	充填料的浓度和流量测定	
6.7	管道阻力损失测定	
第七章	放矿理论	
7.1	概述	
7.2	无限边界条件下的放矿	
7.3	半无限边界条件下的放矿	98

7.	4 不规则边界条件下的放矿	99
7.	5 震动放矿	100
第八章	岩土工程测试技术	102
8.	1 概述	102
8.2	2 电阻应变测试实验	103
8.	3 岩土体声波测试实验	105
8.4	4 岩石破裂声发射特性实验	107
8.:	5 地下空洞无损检测实验	110
第九章	矿井通风与防尘······	113
9.	1 概述	113
9.	2 空气物理参数测定	115
9.	3 风速仪的校正	117
9.	4 风流压力的测定	121
9.	5 管道断面压力分布的测定	123
9.	6 沿程压力变化的测定	125
9.	7 管道阻力系数的测定	127
9.	8 扇风机性能测定	132
9.	9 粉尘浓度测定	137
9.	10 粉尘分散度测定	140
9.	11 CO 含量的测定	142

第一章 地质学基础

1.1 概述

本实验指导书是根据《地质学实验》课程实验教学大纲编写的,适用于采矿工程专业。

1.1.1 课程实验的作用与任务

《地质学基础》是采矿工程专业的一门专业基础课程、《地质学实验》是对《地质学基础》课程的一个辅助教学的实验课程。该实验课教学的作用和任务是巩固和应用已学的地质基础知识,使学生掌握肉眼鉴定矿物、岩石的基本方法,能肉眼识别一些最常见的岩石和矿物,了解矿山常用地质图件的阅读和绘制方法,使学生在今后的工作中能较熟练地阅读和应用地质图件,以及培养学生的动手能力和解决问题的能力。

1.1.2 课程实验的基础知识

本课程实验穿插于《地质学基础》课程教学之中,实验一需具备 地质作用与矿物学的基础知识;实验二需具备岩石学的基础知识;实 验三需具备地质年代和地层系统、地质构造学和地形地质图的基础 知识;实验四需具备矿床学、矿产勘查学和矿山地质学的基础知识。

1.1.3 本课程实验教学项目及要求

表 1-1 地质学实验一览表

							ı		
序号	实验项目名称	学时	实验		实验		 主要设备名称	目的和要求	
号			类别	要求	类型	人数			
1	常见矿物的肉 眼鉴定	2	专业	必修	验证	6~8	矿物标本、放 大镜、素瓷板、 小刀、化学试 剂、电源、导 线、小灯泡、磁 铁、阴极射线 仪等。	掌握肉眼鉴定矿物的原理、工具、方法和步骤,并能识别 20~30种常见矿物。	
2	常见岩石的肉眼鉴定	2	专业	必修	验证	6~8	岩石标本、放 大镜、小刀、 稀盐酸等。		
3	地形地质图、剖 面图的阅读和 制作	2	专业	必修	验证	1	多媒体、地质 模型及作图 工具。	了解地形地 质图、地质剖 面图的用途、 内容、阅读及 作图方法。	
4	矿块三面图的 读图及绘制	4	专业	必修	验证	1	多媒体、矿块 模型及作图 工具。	了解矿块三 面图的用途、 内容、阅读及 作图方法。	

1.2 常见矿物的肉眼鉴定

1.2.1 目的要求

- 1. 掌握观察描述矿物的晶体形态、物理和化学性质的基本方法。
- 2. 掌握肉眼鉴定矿物的一般方法和步骤。
- 3. 能够肉眼识别 20~30 种常见矿物。

1.2.2 实验原理

依据矿物的形态和物理力学性质等最直观的特征,或再辅以很简单的化学试验,利用矿物肉眼鉴定特征表并参考矿物的成因产状,鉴别矿物。

1.2.3 主要仪器及耗材

矿物标本、放大镜、素瓷板、小刀、稀盐酸、40% KOH 溶液、稀电源、导线、小灯泡、磁铁、阴极射线仪等。其中矿物标本包括:

- 1. 自然元素: 石墨、自然金、自然铜。
- 2. 硫化物: 方铅矿、闪锌矿、辰砂、磁黄铁矿、辉锑矿、辉钼矿、黄铁矿、毒砂、黄铜矿、斑铜矿、辉铜矿、铜蓝、雄黄、雌黄、脆硫锑矿。
- 3. 氧化物: 赤铁矿、锡石、软锰矿、石英、磁铁矿、刚玉、水晶、蛋白石、玉髓、玛瑙、铬铁矿、镜铁矿。 氢氧化物: 铝土矿、硬锰矿、褐铁矿。
 - 4. 卤化物: 萤石。
- 5.含氧盐、磷酸盐:磷灰石。钨酸盐:黑钨矿、白钨矿。硫酸盐: 重晶石、石膏。碳酸盐:方解石、白云石、孔雀石、菱铁矿、菱镁矿。硅 酸盐:橄榄石、石榴子石、普通辉石、普通角闪石、阳起石、蛇纹石、黑 云母、白云母、绿泥石、斜长石、正长石、黄玉、电气石、绿柱石、滑石、 高岭石、石棉、红柱石、绿帘石、硅灰石、透辉石、兰晶石。

• 3 •

1.2.4 实验内容与方法步骤

主要在肉眼下借助于简单的工具(小刀、放大镜、条痕板、磁铁等)和药品(盐酸)等,观察(测)和描述矿物的形态、物理性质和某些化学性质,对照教材中"常见矿物肉眼鉴定特征表"进行矿物鉴定。观察(测)的内容和步骤如下:

- (一)观察描述矿物的形态
- 1. 单体形态 根据单个晶体三度空间相对发育的比例不同,可将晶体形态特征分为一向延长、二向延长和三向等长三种。
 - (1) 一向延长晶体
- ①柱状:绿柱石、电气石、角闪石、石英(水晶)等。②柱状或针状:辉锑矿、辉铋矿等。③毛发状:石棉等。
 - (2) 二向延长晶体
- ①板状或片状: 白云母、黑云母、绿泥石、辉钼矿、赤铁矿等。②厚板状或短柱状: 黑钨矿、铌钽铁矿、重晶石等。
 - (3) 三向等长晶体

粒状: 石榴子石、黄铁矿、橄榄石、方铅矿等。

- 2. 集合体形态
- (1) 显晶集合体
- ①柱状集合体:普通角闪石、电气石、红柱石、辉锑矿、辉铋矿等。②纤维状集合体:石膏、石棉等。③(鳞)片状集合体:白云母、黑云母、石墨、辉钼矿、镜铁矿等。④粒状集合体:橄榄石、石榴子石、萤石、黄铁矿、黄铜矿等。⑤晶簇状集合体:石英、方解石等。⑥放射状集合体:红柱石、阳起石等。⑦树枝状集合体:自然铜等。
 - (2) 隐晶及胶态集合体
- ①分泌体: 玛瑙。②结核状: 钙质结核、黄铁矿结核。③鲕状、豆状及肾状: 赤铁矿。④钟乳状: 方解石, 皮壳状: 孔雀石, 葡萄状: 重晶石。⑤土状: 高岭土(石)。

(二) 观察描述矿物的光学性质

- 1. 颜色 根据颜色的成因不同可分为自色、他色、假色,但具有 鉴定意义的主要为自色。
 - (1) 描述颜色的方法 通常描述颜色的方法有两种:
- ①标准色谱法。此种方法是按红、橙、黄、绿、蓝、靛、紫标准色或白、灰、黑等对矿物的颜色进行描述。若矿物为标准色中的某一种,则直接用其描述,如蓝铜矿为蓝色、辰砂为红色;若矿物不具某一标准色,则以接近标准色中的某一种颜色为主体,用两种颜色进行描述,并把主体颜色放在后面。例如绿帘石为黄绿色,说明此矿物是以绿色为主,黄色为次。
- ②实物对比法。把矿物的颜色与常见实物颜色相比较进行描述。例如,块状石英呈乳白色,正长石为肉红色,黄铜矿为铜黄色等。
 - (2) 观察矿物比色标本 常用的矿物比色标本如下表:

编号	矿物名称	物名称 色别 编号		矿物名称	色别	
1	砂金	自色: 金黄色	11	兰铜矿	自色: 兰色	
2	黄铜矿	矿 自色:铜黄色 12 铝土矿		铝土矿	自色: 灰白色	
3	雌黄	雌黄 自色: 柠檬黄色		孔雀石	自色: 绿色	
4	硫磺 自色: 鲜黄色		14	赤铁矿	自色: 赭红	
5	褐铁矿	自色: 褐色	15	萤石	自色: 紫色	
6	雌黄	自色: 橙色		方铅矿	自色: 铅灰色	
7	辰砂			磁铁矿	自色: 铁灰色	
8	自然铜 自色: 铜红色		18	蔷薇石英、烟水晶	他色	
9	蔷薇辉石	自色: 蔷薇色	19	冰洲石	晕色	
10	水银	自色: 银白色	20	黄铜矿、斑铜矿	锖色(假色)	

表 1-2 常用的矿物比色标本

(3) 注意要点 描述矿物颜色时,应以新鲜干燥矿物为准,如果

矿物表面遭受风化而颜色发生了变化时,则需刮去风化表面后再进行观察描述。

- 2. 条痕 条痕是指矿物粉末的颜色,一般是指矿物在白色无釉 瓷板上擦划所留下的痕迹的颜色。条痕色可能深于、等于或浅于矿物的自色。条痕色对不透明的金属、半金属光泽矿物的鉴定很重要,而对透明、玻璃光泽矿物来说,意义不大,因为它们的条痕都是白色或近于白色。
 - (1)条痕色的描述方法与颜色相似。
 - (2)擦划条痕时,用力要均匀。
 - (3) 观察测试的矿物应选新鲜标本。
- 3. 光泽 根据矿物表面反光的强度,可将矿物的光泽分为金属光泽、半金属光泽、非金属光泽三类。
 - (1) 观察矿物光泽标准标本。

表 1-3 常见矿物光泽类型及其典型矿物

编号	光	泽类型	典型矿物
1	金属光泽		方铅矿、自然金、黄铜矿、黄铁矿
2	半金属光泽		赤铁矿、磁铁矿
3		金刚光泽	金刚石、红宝石、闪锌矿、辰沙、锡石
4	非金	玻璃光泽	水晶、橄榄石、方解石、黄玉、电气石、阳起石
5		油脂光泽	滑石
6	属光	丝绢光泽	石棉
7	泽	珍珠光泽	白云母
8	1	蜡状光泽	叶腊石
9		土状光泽	高岭土、硬锰矿

(2) 非金属光泽中,由于矿物表面不平整或在某些集合体表面 会产生特殊的变异光泽。注意观察油脂光泽、丝绢光泽、珍珠光泽、 土状光泽等。

- (3)注意要点:观察矿物光泽时,一定要在新鲜面上观察,主要观察晶面和解理面上的光泽。
- 4. 透明度 矿物透明度是指矿物透过光线的程度,一般是以矿物厚度 0.03mm 的薄片为准。分为透明(如方解石、白云母)、半透明(如闪锌矿、辰沙)和不透明(如磁铁矿、方铅矿)三级。

注意要点:观察描述矿物光学性质时,一定要注意掌握颜色、条痕、光泽和透明度四者之间的关系。金属光泽的矿物,其颜色一定为金属色,条痕为黑色或金属色,不透明;半金属光泽的矿物颜色为金属色或彩色,条痕呈深彩色或黑色,不透明至半透明;非金属光泽的矿物颜色为各种彩色或白色,条痕呈浅彩色到白色,半透明至透明。

(三)观察描述矿物的力学性质

- 1. 解理 解理是矿物的重要鉴定特征之一。解理按其发育程度分极完全解理(云母)、完全解理(方解石)、中等解理(长石)、不完全解理(磷灰石)和极不完全解理五级。
- (1) 观察解理等级 根据解理面的完好和光滑程度以及大小,确定其解理等级。注意观察白云母、方解石、普通角闪石、磷灰石、石英的解理发育情况。
- (2) 观察解理组数 矿物中相互平行的一系列解理面称为一组 解理。注意观察云母、正长石、方解石、萤石的解理组数。
- (3) 观察解理面间的夹角 两组及两组以上的解理,其相邻两解理面间的夹角亦是鉴定矿物的标志之一。注意观察正长石、辉石、角闪石、萤石的解理夹角。
- (4) 注意要点 肉眼观察矿物的解理只能在显晶质矿物中进行。确定解理组数和解理夹角必须在一个矿物单体上观察。
- 2. 断口 根据矿物受力后不规则裂开的形态,可分为贝壳状断口(石英)、参差状断口(黄铁矿)、纤维状断口(石膏)、土状断口(高岭土)和锯齿状断口(自然铜)等类型。

3. 硬度 肉眼观察的是矿物的相对硬度,是以摩氏硬度计(由 10 种不同硬度的矿物组成)为标准进行比较而确定的。观察摩氏硬度计。

表 1-4 摩氏硬度计

摩氏硬度 级别	1	2	3	4	5	6	7	8	9	10
矿物名称	滑石	石膏	方解石	萤石	磷灰石	正长石	石英	黄玉	刚玉	金刚石

野外工作中为了方便,常采用指甲(硬度为 2.5 ±)、小刀(硬度 为 5.5 ±)、石英(硬度 为 7)等作为标准测定相对硬度。

注意要点: 刻划矿物时用力要均匀。测试矿物时须选择新鲜面, 并尽可能选择矿物的单体。

4. 相对密度 按用手掂的感受,一般分轻、中、重三级。

轻矿物(<2.5):石膏、石墨。

中等矿物(2.5~4.0): 石英、方解石。

重矿物(>4.0):重晶石、方铅矿、黑钨矿。

(四)观察描述矿物的其他物理性质

- 1. 矿物的其他物理性质可包括: 磁性、导电性、发光性、放射性、延展性、脆性、弹性和挠性等。
- 2. 并非大多数矿物都能表现出很典型的上述物理性质。注意观察: 磁铁的磁性,云母的弹性,白钨矿(淡兰色)和萤石(较弱的淡兰色)的发光性,自然铜、黄铜矿、辉铜矿、石墨等的导电性。

(五)矿物鉴定

根据矿物形态和物理力学性质等,查鉴定表(见教材 P32~P43) 定名。其一般步骤是:首先根据矿物的光泽,是金属光泽还是非金属 光泽,借以确定是金属矿物还是非金属矿物;其次根据矿物的硬度, 是大于小刀还是小于小刀;再次是根据它的颜色;最后根据矿物的形态和其他物理性质,逐步缩小范围。

(六)验证

如果仍有疑问,可通过简易化学试验、矿物的成因产状及其共生组合规律进行验证,得出正确可靠结论。

1.2.5 实验注意事项

- 1. 鉴定矿物时,观测的性质越多,所定矿物的准确性越高。
- 2. 有些矿物仅据一种性质即可准确定名,但初学者仍应综合地 全面鉴定,掌握每一种矿物的总特征。
- 3. 同一种矿物因成分、结构及集合状态等因素影响,其物性(如颜色、光泽、硬度和解理等)常变化不定,应结合标本反复查对、反复观察。
- 4. 一些外表相似的硅酸盐类矿物,藉助其他方法才能鉴定,肉眼 仅能确定矿物的族名或亚族名,但总是必要的和有益的,如电气石、 辉石、角闪石、绿泥石、长石等。
- 5. 矿物肉眼鉴定表只适用于鉴定常见和较常见的矿物,对罕见的、分散的、在自然界仅呈微量产出的、肉眼无法鉴定的矿物则未列入。

1.2.6 作业及思考题

- 1. 观察磁黄铁矿、赤铁矿、孔雀石、黄铜矿、方解石等的条痕色, 掌握它与颜色的关系。
 - 2. 如何区分晶面和解理面?
 - 3. 常见的铅灰色矿物有几种,如何区分?
 - 4. 如何区分黄铜矿和黄铁矿?
- 5. 按表 1-5 记录格式观察描述 6 块未知样品,并查鉴定表定名。

• 9 •