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Chapter 1 Limits

The notion of limit is one of the fundamental ideas that distinguishes cal-
culus from the other branches of mathematics. In fact, we define calculus this way:

Calculus is the study of the limits.

8 1.1 The Concept of Limits and its Properties

The concept of limit is central to many problems in the physical, en-
gineering, and social science. In this section we introduce the concept of limits,
and its properties. We start with the limit of sequences first and will study limit

of functions later.
§1.1.1 Limits of Sequence

An infinite sequence (or sequence) of numbers is a function whose domain is
the set of integers greater than or equal some integer n,. Sequences are defined

the way other functions are, some typical rules being

1 n—1
A, =ANn, an:(_l)l 1;9 a, — “

n

To indicate that the domains are sets of integers, we use a letter like n from the
middle of the alphabet for the independent variable, instead of the x,y,z, and ¢
used widely in other contexts. The number a, is the nth term of the sequence, or

the term with index n.

The sequences

%}, {(—1)”“%}, and {n—l} each seem to approach a

n
single limiting value as n increases, and {3} is at a limiting value from the very

w11

first. On the other hand, terms of {((—1)

} seem to accumulate near two

different values: —1 and 1, while the terms of {\/n} become increasingly large
and do not accumulate anywhere.
To distinguish sequences that approach a unique limiting value a, as n

o1 .
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increases, from those that do not, we say that the former sequences converge,
according to the following definition.
Definition 1  The sequence {a,} converges to the number a if to every

positive number ¢ there corresponds an integer N such that for all n,
n>N =|a,—al <e.

If no such number a exists, we say that {a,} diverges. If {a,} converges to a, we

write lima,=a, or simply a,—>a (n—>c2), and call a the limit of the sequence.

n—>co

a(n>N)

a, a, ¢ / 1\ N ay a4
a—¢ a a

o

+g

Figure 1. 1
In Figure 1.1, all the a,’s after ay lie within ¢ of a.

Example 1 Using the definition to show that lim%ZO.

Solution Let e=>0 be given. We must show that there exists an integer N
such that

1

n

n>N =

—0 ’ <e.

This implication will hold if %<e or n>% If we choose N = [%], the

implication will hold for all »>>N.
Example 2 Prove that limg"=0 ([¢[<C1).

n—>oco

Solution If ¢=0, then ¢"=0 (n=1,2,-+), and the limit is 0 obviously. If
0<|qg|<<1, let 0<Ce<C1 be given. We want to find N such that

n>N =|q"—0]|=|q|"<e.

Consider the inequality,

lq|"<<e © nln|q|<lne & n>lr111[17q€|
£ e talees = [1:'1; } the implication. will hald far all m3<N.

2n+1_ 2

Example 3 Prove that lim =1 3"

1

Solution Let e=>0 be given. Choose N:[ e ] Then n>>N implies that

. 9 .
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‘ZnJrl 2 ‘_671+3—6n+2_ 5 6 1
E) <.

3n—1 T 3(3n—1D) _3(3n*1)<3°2n:7

We have given the definition of divergence above, now we present the
definition more precisely.

Definition 2 If there exists ¢, >0, for any N &€ N*, there exists n, >N,
such that \x,,(] —al|=e,, then we say that {a,} diverges.

Example 4 Prove that {(—1)"} diverges.

Proof Take ¢, =1. If a—=0, then for any N, there exists an odd number
n, >N, such that

[(—1)" —a|=|—1—a|=1=¢,.
If a<<0, then for every N, there exists an even number n,>>N, such that
[(—1)" —a|=|1—a|>1=¢,.
This implies that {(—1)"} diverges.
§1.1.2 Limits of Functions

Consider the functions
fo)=2", glx) :i’ h(x)=sin i
# 5
When x approaches to 0, f(x) = x" also approaches to 0, while the absolute
value of g(x):% gets larger and does not approach a fixed finite number.
Moreover, the value of h swings, such as

h(ﬁ):o, h {ﬁ}zl,

2n+%

therefore h(x) does not approach any one specific finite number.

We saw similar behaviors for sequences when n approaches infinity. The

function f(x), g(x), h(x) are compare to

niz} {(=D"}, {(=1)"}. Only

the first converges. This leads to the similar definition of limit for functions.
Definition 3 Let f be defined on an open interval about x,, except possibly
at x, itself. We say that f(x) approaches the limit a as x approaches x,

and write
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lim f(x)=a,

if, for every number e >0, there exists a corresponding number § such that for all x
0<l|x—a | <6 =| fla)—a|<e.
The definition lim f(x) =a means that f(x) goes close to a when x gets

>z,

sufficiently close to (but is different from) x,(Figure 1. 2).

¥
(7 5 o - RO A

a
N J......

O Xo—8 X X%t§ x

Figure 1.2

Example 5 Use the definition to prove that lim a*=1, where a>>1.

x>0

Proof Let e>0 be given, without loss of generality, we may assume that
0<e<<1l. We want to find §>0 such that

0<<|zx|<d=la"—1|<e.
Now
la*—1|<e & 1—e<<a*<l+e & log, (1—e)<<ax<log,(1+e).

If we choose 8=min{—log,(1—e¢),log,(1+¢)}, the implication will hold for 0<C
| x| <o.
Example 6 Prove that if x,>>0, then lim/x = /2.

T

Proof For any e >0, we are looking for § such that

0<|z|<<o = |Vx— Vxo | <e.
We should first insist that §<Zx,, for then (xo —8&, x, +8) [0, + o) implies

that >0, so that +/x is defined. Now

|f_I()|

xy

To make the latter less than e requires that |x—x,|<le+/x,. Choose & =
o

[z — /s |_L/—x_ro < <L

x+ Vx
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min{ v/x,es2, ) » then the implication will hold for all 0<|x—x, | <§.

x—3 1
Example 7 Use the definition to prove that l}i?x-i—l 3

Proof lLete>>0 be given. We must {ind ¢ such that

z—3 , i
0<|x 2|<5:‘I—+1+§‘<s.
Now
i’:‘&‘r 9+x—|—1‘ ‘41—8 _ 4 |x—2|
3(z+1) 3x+D | 3 |a+1I

The factor xil is troublesome especially if x is near to —1. We can bounded
this factor if we keep x away from —1. To this end, note that
|z+1|=|z—2+3|=|3—|z2—2]].

Thus, if we choose §<Z1, we succeed in making |x+1|>>2. Finally, if we also
require 6<Ze, then

4 |x—2
‘3 <

4
s+1] ™3

I
‘IH L=zl <la—2l<e.

Choose §=min{1,e}, the implication will hold for 0<|x—2|<6.

It is possible for a function to approach a limiting value as x approaches from
only one side, either from the right or from the left. In this case we say that f
has a one-sided (either right-hand or left-hand) limit at x,.

Definition 4 A function f(x) converges to a finite limit @ on the right side
of x=ux, if f(x) approaches a as x>z, and approaches z,. In this case, we say

that f has right-hand limit a at x,, and denote

lim f(x)=a or f(x,+0)=a.

T+

The left-hand limit at x, is defined similarly, denoted as

lim f(x)=a or f(z,—0)=a.

>z,

By the definition of the right-hand and left-hand limit, it is easily to see the
following theorem.
Theorem 1 (One-sided vs. Two-sided Limits) A function f(x) has a limit as
x approaches x, if and only if it has left-hand and right-hand limits there, and
» B s
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these one-sided limits are equal:

1imf(1‘):a & lim f(x)= lirrif(x):a.

The sign function, which is also called a step function,

1 (x>0);
sgnx ==+ 0 (x=0);
—1,  (m<0);:

We have

lim f(x)=—1, lim f(2)=1.

-0 0"
Since the two sided limits are not equal, limf(x) does not exist.
a0

Now we will give a new kind of limits. In analogy with our e-¢ definition for
ordinary limits, we make the following definitions for limits as x approach oo,
The definition of x—>-+oc and x—>—co are similar, we omit here.

Definition 5 Let f be defined on (—oo,+c0), We say that lim f(x)=a if

x>0

for >0 there is a corresponding number X such that

|| >X =| f(x)—a|<e.

Figure 1.3

You will note that X can, and usually does, depend on e. In general, the
smaller ¢ is, the larger X will have to be. The graph in Figure 1. 3 may help you
to understand what we are saying.

Example 8 Show that limsflz

0.
Proof Let e>0 be given, we are looking for M such that

<L<€ ’

||

sinx
Z

sinx
m

o|=
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‘<L<e.

||

sinx

we may choose MZL. Then |x|>M implies that
€

§1.1.3 Properties of Limits

The limit of a function has similar properties as the limit of a sequence, so
we only state the properties of limit of a function.

Proposition 1 (Uniqueness) If lim f(x) exists, then it must be unique.

>
T

|b—al

Proof Suppose that lim f(x) =a and lim f(x) =0, a#b. Let e= 5

> i
TEZy Tz

Since lim f(x)=a, there exists §, >0, such that

x>z,

0<|zx—x | <81=| fx) —al| <e.

Since lim f(x) =0, there exists §, >0, such that

x>z

0<|ax—xz | <8H=| fx) —b|<e.
We may choose $=min{d,, &>}, then
0<l|x—a | <& =>|b—al<| f(x)—al|+|f(x)—b|<2=|b—al.

Which is a contradiction. Thus a=b.

Proposition 2 (Boundedness) If lim f(x) exists, then f is bounded on some

0

deleted interval about x,.

Proof Let e=1. Since lim f(x)=a, there exists >0, such that

T

0

0<l|zxz—x | <6 =| fla)—a|<1.
That is, for 0<<|x—x, | <6, we have
| f(o) | <| fla)—al+|al<<14|al.

Proposition 3 (Order Rule) Suppose lim f(x) =a, limg(x) =0 and a<b,

x>z, oy

then f(x)<g(x) for all x in some deleted interval about x,.

Proof Let e:b%a. Since 1imf(x):a, there exists §, >0, such that
0< |z—z | <8i=>| f) —a| <24,
then
f'(1')<a+{];a:a—;{).
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Since limg(x) =0, there exists §, >0, such that

x>

0

0<|x—x, | <= | g () —b| <2,
then
! _b—a_atb
g(x)>b 5 o

We may choose §=min{¢8,, 8,}. Thus for 0<|x—x,| <5, we have

b—a

fla)<< 7

< glzx);

Corollary 1 If lim f(x)<C0, then f(2)<C0 for all x in some deleted interval

2=z,

about o s

Corollary 2 If lim f(x)=a, limg(x) =0 and f(x)<<g(x) for all x in some

0 0

deleted interval about x,, then a<{b.
We saw some limits of functions inspired by the similar limits of sequences.
This suggests that there is a relationship between the two kinds of limits.

Theorem 2 (Heine’s Theorem) lim f(x) =a if and only if for any sequence

>z

0

{a,} satisfying a,—>x,(a,#x,), we have lim f(a,) =a.

n—>oo

Proof Let lim f(x)=a. For every ¢e=>0, there exists §>>0, such that

>,

0

0<|ax—ux, | <6 =] fx)—al<e.
Since a,—>x, . a,7#x,, for the above §>0, there exists NEN*, such that
n>N =>0<l|a, —x, | <5

so we conclude that, for every e=>0, there exists N&EN™*, such that n>>N implies
that

| fla,) —al<e.

Thus the necessity of the theorem is proved. Next we will show the sufficiency
by the method of contradiction.
Suppose that lim f(x)7a, then there exists g, >0, for every n€ N*, there

x>z,

. . : 1
exists a, which satisfy 0<Z|a, —x, \<7, but

|f(a,,)_a‘>€().
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So we get a sequence {a,). a,# x, and a,—>x,, but lim f(a,) #a. It is a

n—>co
contradiction.

The theorem is usually used to prove the divergence of a function.

Example 9 Prove that limsin % diverges.

x>0

Proof f(:(,,)=sin<2nrc+%)=1,

1
for the sequence x,=——— that converges to 0.

27’17r-|—%
f(x))=sinnmr=0
r_ 1
for the sequence @, = converges 10 0.
T
Thus limsin % diverges by Heine’s Theorem.
x>0
Consider the graph y=sin l In any neighborhood of the origin, the graph
=
wiggles up and down between — 1 and 1 infinitely many times (Figure 1. 4).

. 1. .
Clearly, sin — is not near a single number.
x

y=siny: L

Figure 1.4

Exercise 1.1

1. Which of the following are equivalent to the definition of limit?

(1) For some €0 and every §>0, 0<|x—ux, | <8 =| f(2) —al| <e.

(2) For every §>>0, there is a corresponding e=>0 such that 0<|x—x, | <e
=| f(x)—al| <.



