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PREFACE §¢

The fourth edition of Digital Communications has undergone a minor revision.
Several new topics have been added. including serial and parallel concatenated
codes, punctured convolutional codes, turbo TCM and turbo equalization, and
spatial multiplexing. Since this is an introductory-level text, the treatment of
these topics is limited in scope.

The book is designed to serve as a text for a first-year graduate-level course
for students in electrical engineering. It is also designed to serve as a text for self-
study and as a reference book for the practicing engineer involved in the design
of digital communications systems. As a background, I presume that the reader
has a thorough understanding of basic calculus and elementary linear systems
theory and some prior knowledge of probability and stochastic processes.

Chapter 1 is an introduction to the subject, including a historical perspective
and a description of channel characteristics and channel models.

Chapter 2 contains a review of the basic elements of probability and stochas-
tic processes. It deals with a number of probability distribution functions and
moments that are used throughout the book. It also includes the derivation of
the Chernoff bound, which is useful in obtaining bounds on the performance of
digital communications systems.

Chapter 3 treats source coding for discrete and analog sources. Emphasis is
placed on scalar and vector quantization techniques, and comparisons are made
with basic resuits from rate-distortion theory.

In Chapter 4, the reader is introduced to the representation of digitally
modulated signals and to the characterization of narrowband signals and sys-
tems. Also treated in this chapter are the spectral characteristics of digitally
modulated signals. New material has been added on a linear representation of
CPM signals.

Chapter 5 treats the design of modulation and optimum demodulation and
detection methods for digital communications over an additive white Gaussian
noise channel. Emphasis is placed on the evaluation of the error rate perfor-
mance for the various digital signaling techniques and on the channel bandwidth
requirements of the corresponding signals.

Chapter 6 is devoted to carrier phase estimation and time synchronization
methods based on the maximum-likelihood criterion. Both decision-directed and
non-decision-directed methods are described.

Xix
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Chapter 7 treats the topics of channel capacity for several different channel
models and random coding. _

Chapter 8 treats linear block and convolutional codes. The new topics added
to the chapter include serial and parallel interleaved concatenated block and
convolutional codes, punctured and rate-compatible convolutional codes, the
soft-output Viterbi algorithm (SOVA), and turbo TCM. .

Chapter 9 is focused on signal design for bandlimited channels. This chapter
includes the topics of partial response signals and run-length-limited codes for
spectral shaping.

Chapter 10 treats the problem of demodulation and detection of signals
corrupted by intersymbol interference. The emphasis is on optimum and sub-
optimum equalization methods and their performance. New topics added to the
chapter include Tomlinson-Harashima precoding, reduced complexity maxi-
mum-likelihood detectors, and turbo equalization.

Chapter 11 treats adaptive channel equalization. The LMS and recursive
least-squares algorithms are described, together with their performance charac-
teristics. This chapter also includes a treatment of blind equalization algorithms.
New topics added include the tap-leakage algorithm and methods for accelerat-
ing the initial convergence of the LMS algorithm.

Chapter 12 treats multichannel and multicarrier modulation. The latter sub-
Ject is particularly appropriate in view of several important applications that
have been developed over the past two decades.

Chapter 13 is devoted to spread spectrum signals and systems. The benefits of
coding in the design of spread spectrum signals is emphasized throughout this
chapter.

Chapter 14 treats communication through fading channels. Several channet
fading statistical models are considered, with emphasis placed on Rayleigh fad-
ing and Nakagami fading. Trellis coding for fading channels is also included in
this chapter. New material added includes a brief treatment of fading and multi-
path characteristics of mobile radio channels, receiver structures for fading mul-
tipath channels with intersymbol interference, and spatial multiplexing using
multiple transmit and receive antennas. ’

Chapter 15 treats multiuser communications. The emphasis is on code-divi-
sion multiple access (CDMA), signal detection and random access methods. such
as ALOHA and carrier-sense multiple access (CSMA).

With 15 chapters and a variety of topics, the instructor has the flexibility to
design either a one- or two-semester course. Chapters 3 through 6 provide a basic
treatment of digital modulation/demodulation and detection methods. Channel
coding, treated in Chapters 7 and 8, can be included along with modulation and
demodulation in a one-semester course. The topics of channel equalization, fad-
ing channels, spread spectrum, and multiuser communications can be covered in
a second-semester course.

Throughout my professional career, I have had the opportunity to work with
and learn from a number of people whom I should like to publicly acknowledge.
These include Dr. R. Price, P.R. Drouilhet, Jr., and Dr. P.E. Green, Jr.. who
introduced me to various aspects of digital communications through fading
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multipath channels and multichannel signal transmission during my employment
at the MIT Lincoln Laboratory. I am also indebted to Professor D.W. Tufts,
who supervised my Ph.D. dissertation at Harvard University and who intro-
duced me to the problems of signal design and equalization for band-limited
channels. Over the years. I have had the pleasure of working on a variety of
research projects in collaboration with colleagues at GTE and Stein Associates.
including Dr, S. Stein, Dr. B. Barrow, Dr. A.A. Giordano, Dr. A.H. Levesque,
Dr. R. Greenspan, Dr. D. Freeman, P.H.Anderson, D. Gooding. and J.
Lindhoim. At Northeastern University, I have had the benefit of collaborating
with Dr. M. Salehi, Dr. M. Stojanovic, and Dr. D. Brady. Dr. T. Schonhoff
provided the graphs illustrating the spectral characteristics of CPFSK, and H.
Gibbons provided the data for the graphs in Chapter 14 that show the perfor-
mance of PSK and DPSK with diversity. The assistance of these colleagues is
greatly appreciated.

McGraw-Hill and [ would like to thank the following reviewers of this
edition for their valuable suggestions: William E. Ryan, University of Arizona;
Tan Wong, University of Florida; and Raymond Pickholtz. George Washington
University.

Finally, I wish to express my,appreciation to Gloria Doukakis, for typing the
manuscript of this edition, and to Apostolos Rizos for preparing the Solutions
Manual.
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1

Introduction

In this book, we present the basic principles that underlie the analysis und design
of digital communication systems. The subject of digital communications
involves the transmission of information in digital form from a source that
generates the information to one or more destinations. Of particular importance
in the analysis and design of communication systems are the characteristics of the
physical channels through which the information is transmitted. The character-
istics of the channel generally affect the design of the basic building blocks of the
communication system. Below. we describe the elements of 4 communication
system and their functions.

1.1
ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM

Figure 1.1-1 tllustrates the functional diagram and the basic elements of a digital
communication system. The source output may be either an analog signal, such
as an audio or video signal, or a digital stignal. such as the output of a teletype
machine, that is discrete in time and has a finite number of output characters. In
a digital communication system, the messages produced by the source are con-
verted into a sequence of binary digits. Ideally. we should like to represent the
source output {message) by as few binary digits as possible. 1n other words, we
seck an efficient representation of the source output that results in little or no
redundancy. The process of efficiently converting the output of either an analog
or digital source into a sequence of binary digits is called source cncoding or data
compression.

The sequence of binary digits from the source encoder. which we call the
information sequence, is passed to the channel encoder. The purpose of the chan-
nel encoder is to introduce, in a controlled manner, some redundancy in the
binary information sequence that can be used at the receiver to overcome the
effects of noise and interference encountered in the transmission of the signal
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Information
source and Source Channel Digital
input transducer encoder encoder modulator
Channel
Output Output Source Channet Digital
signal tnsduces decoder decoder demodulator
FIGURE 1.1-1

Basic elements of a digital communication system.

through the channel. Thus, the added redundancy serves to increase the relia-
bility of the received data and improves the fidelity of the received signal. In
effect, redundancy in the information sequence aids the receiver in decoding the
desired information sequence. For example, a (trivial) form of encoding of the
binary information sequence is simply to repeat each binary digit m times, where
m is some positive integer. More sophisticated (nentrivial) encoding involves
taking & information bits at a time and mapping each k-bit sequence into a
unique #-bit sequence, called a code word. The amount of redundancy introduced
by encoding the data in this manner is measured by the ratio n/k. The reciprocal
of this ratio, namely k/r; is called the rate of the code or, simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the
digital modulator, which serves as the interface to the communication channel.
Since nearly all the communication channels encountered in practice are capable
of transmitting electrical signals (waveforms), the primary purpose of the digital
modulator is to map the binary information sequence into signal waveforms. To
elaborate on this point, let us suppose that the coded information sequence is to
be transmitted one bit at a time at some uniform rate R bits per second (bits/s).
The digital modulator may simply map the binary digit 0 into a waveform sq(r)
and the binary digit 1 into a waveform s5,(f). In this manner, each bit from the
channel encoder is transmitted separately. We call this hinary modulation.
Altematwely, the modulator may transmit 5 coded mformauon bits at a time
by using M = 2° distinct waveforms s{0.i=0.1,. — 1, one waveform for
each of the 2° possible b-bit sequences. We call thls M—arv modulation (M > 2).
Note that a new b-bit sequence enters the modulator every b/R seconds. Hence,
when the channel bit rate R is fixed, the amount of time available to transmit one
of the M waveforms corresponding to a b-bit sequence is b times the time period
in a system that uses binary modulation.

The communication channel is the physical medium that is used to send the
signal from the transmitter to the receiver. In wireless transmission, the channel
may be the atmosphere (free space). On the other hand, telephone channels
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usually employ a variety of physical media. including wire lines, optical fiber
cables. and wireless (microwave radio). Whatever the physical medium used for
transmission of the information, the essential feature is that the transmitted
signal is corrupted in a random manner by a variety of possible mechanisms.
such as additive thermal noise generated by electronic devices; man-made noise.
e.g., automobile ignition noise: and atmospheric noise. e.g.. electrical lightning
discharges during thunderstorms.

At the receiving end of a digital communication system, the digital demodu-
lator processes the channel-corrupted transmitted waveform and reduces the
waveforms to a sequence of numbers that represent estimates of the transmitted
data symbols (binary or M-ary). This sequence of numbers is passed to the
channel decoder. which attempts to reconstruct the original information
sequence from knowledge of the code used by the channel encoder and the
redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the fre-
quency with which errors occur in the decoded sequence. More precisely. the
average probability of a bit-error at the output of the decoder is 2 measure of the
performance of the demodulator-decoder combination. In general, the probabil-
ity of error is a function of the code characteristics. the types of waveforms used
to transmit the information over the channel. the transmitier power. the char-
acteristics of the channel (i.e.. the amount of noise. the nature of the interfer-
ence), and the method of demodulation and decoding. These items and their
effect on performance will be discussed in detail in subsequent chapters.

As a final step, when an analog output is desired, the source decoder accepls
the output sequence from the channel decoder and, from knowledge of the
source encoding method used, attempts to reconstruct the original signal from
the source. Because of channel decoding errors and possible distortion intro-
duced by the source encoder, and perhaps. the source decoder, the signal at
the output of the source decoder is an approximation to the original source
output. The difference or some function of the difference between the original
signal and the reconstructed signal is a measure of the distortion introduced by
the digital communication system,

£ 1.2
COMMUNICATION CHANNELS AND THEIR CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides
the connection between the transmitter and the receiver. The physical channel
may be a pair of wires that carry the electrical signal, or an optical fiber that
carries the information on a modulated light beam, or an underwater ocean
channel in which the information is transmitted acoustically, or free space
over which the information-bearing signal is radiated by use of an antenna.
Other media that can be characterized as communication channels are data
storage media. such as magnetic tape, magnetic disks, and optical disks.
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One common problem in signal transmission through any channel is additive
noise. In general, additive noise is generated internally by components such as
resistors and solid-state devices used to implement the communication system.
This is sometimes called thermal noise. Other sources of noise and interference
may arise externally to the system, such as interference from other users of the
channel. When such noise and interference occupy the same frequency band as
the desired signal, their effect can be minimized by the proper design of the
transmitted signal and its demodulator at the receiver. Other types of signal
degradations that may be encountered in transmission over the channel are
signal attenuation, amplitude and phase distortion. and multipath distortion.

The effects of noise may be minimized by increasing the power in the trans-
mitted signal. However. equipment and other practical constraints limit the
power level in the transmitted signal. Another basic limitation is the available
channel bandwidth. A bandwidth constraint is usually due to the physical limita-
tions of the medium and the electronic components used to implement the
transmitter and the receiver. These two limitations constrain the amount of
data that can be transmitted reliably over any communication channel as we
shall observe in later chapters. Below, we describe some of the important char-
acteristics of several communication channels.

Wireline channels. The telephone network makes extensive use of wire lines
for voice signal transmission, as well as data and video transmission. Twisted-
pair wire lines and coaxial cable are basically guided electromagnetic channels
that provide relatively modest bandwidths. Telephone wire generally used to
connect a customer to a central office has a bandwidth of several hundred kilo-
hertz ¢kHz). On the other hand, coaxial cable has a usable bandwidth of several
megahertz (MHz). Figure 1.2-1 illustrates the frequency range of guided electro-
magnetic channels, which include waveguides and optical fibers.

Signals transmitted through such channels are distorted in both amplitude
and phase and further corrupted by additive noise. Twisted-pair wireline chan-
nels are also prone to crosstalk interference from physically adjacent channels.
Because wireline channels carry a large percentage of our daily communications
around the country and the world. much research has been pertormed on the
characterization of their transmission properties and on methods for mitigating
the amplitude and phase distortion encountered in signal transmission. In
Chapter 9, we describe methods for designing optimum transmitted signals
and their demodulation; in Chapters 10 and 11, we consider the design of chan-
nel equalizers that compensate for amplitude and phase distortion on these
channels.

Fiber-optic channels. Opticai noers offer the communication system designer
a channel bandwidth that is several orders of magnitude larger than coaxial cable
channels. During the past two decades. optical fiber cables have been developed
that have a relatively low signal attenuation, and highly reliable photonic devices
have been developed for signal generation and signal detection. These technolo-
gical advances have resulted in a rapid deployment of optical fiber channels, both
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