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Chapter 1
Kinematics

Kinematics is the study of the geometry of motion: it deals with the mathematical de-
scription of motion in terms of position, velocity, and acceleration. Kinematics serves as a

prelude to dynamics, which studies force as the cause of changes in motion.

§ 1-1 Frame of Reference Particle

1. Frame of reference coordinate system

The world we live in is made of matter, from the largest bodies, such as the earth, one
of the nine planets® in solar system, the galaxies® and the entire universe, to the smallest
particles, such as molecules, atoms and subatomic particles: elections and nucleus composed
of protons and neutrons, each proton and each neutron is made of two kinds of quarks®,
called up quark and down quark. Although the objects above differ in size by a factor of more
than 10*, they have a universality—being in endless motion, and from this point of view, we
say that the motion is absolute. ‘

In the remainder of this chapter we shall discuss the position and the speed of various
objects. To do this scientifically we must first answer the question “position with respect to
what?” and “velocity with respect to what”? If we choose different objects as the reference to
describe the motion of a given body, the indications will be different. For example, if you
stand on the ground in a train station and let a ball drop freely from your hand, the motion of
the ball seems to be along straight line by you, but along a parabola of trajectory projected
horizontally by the observer seating in a moving coach passing through the station. From
this point of view, we say that motion is a relative concept and it must always be referred to

a particular body that serves as a reference chosen by the observer. Since different observers

@ The nine planets of solar system include the inner planets; Mercury, Venus, Earth and Mars; the outer planets;
Jupiter, Saturn, Uranus, Neptune and Pluto. The sun is in the center of solar system.

@ There are so many galaxies in the universe that there are about 2. 3X 10° galaxies in an angular patch of the sky,
40° by 40°. They are i at a middle distance, at about 1.4 10° light—years from the Earth. Qur sun is in a spiral galaxy:
the Galaxy of the Milky Way. The total number of stars in our own galaxy is about 10", The sun is in one of the spiral
arms.

® The quarks within protons and neutrons are of two kinds, called up and down. The proton consists of two up
quarks and one down quark bound together; the neutron consists of one up quark and two down quarks bound together. Be-
sides these two kinds of quarks, physicists have discovered four other kinds, called by quaint names Strange, Charmed. Top
and Bottom. These quaint quarks do not occur in pieces of ordinary matter, they can only be manufactured under exceptional
circumstances in high - energy collisions between subatomic particles.




may use different frames of reference, it is important to know how observations made by dif-
ferent observers are related. For example, when we discuss motions on the surface of the
earth, this is the most cases in our course, it is convenient to take the earth’s surface as our
frame of reference. For the motion of the earth or other planets, a particular set of stars
called fixed stars, for instance, sun is a good choice, whereas for the motion of the electrons
in an atom, the nucleus of the atom is preferred.’ You are free to choose the frame of refer-
ence, but in all cases it is necessary to specify what reference frame is being used and you
must always be aware of your choice and be careful to make all your measurements with re-
spect to it.

In physics a frame of reference is usually pictured in terms of a coordinate system, con-
sisting of three mutually perpendicular axes, called the X,Y and Z axes, relative to which
position in space, velocity, acceleration and orbit can be specified. These three axes intersect
at the origin (O) of the coordinate system. In Fig. 1-1, let us consider two observers, one of
them on the sun and the other on the earth, both observers are studying the same motion of
an artificial satellite of the earth. To the observer using frame X'Y’'Z’, the satellite appears
to describe an almost circular path around the earth. To the solar observer using frame

XYZ, the satellite’s orbit appears as a wavy line.

Pathof N\ . T~ ,7
satellite relative™—" - ~s
to the sun . L/ ;

satellite -relative —
to the earth ~

X’.

Figure 1-1 Orbit of a satellite relative to the earth and the sun.

The wiggles in the satellite’s orbit are greatly exaggerated here.

2. Particles

The moving objects that we might examine are among countless possibilities. We shall
restrict our concentration on a simple case—translational motion of a particle first, which is
defined as the change of position of the particle as a function of time. In the case of an ideal
particle—a body with mass, but with no size and no shape, therefore position as a function

2




of time gives a complete description. We can represent an object as a particle (that is as a
mass point) if every small part of the object moves in exactly the same way. The concept of
particle is an ideal model, the motion of objects are usually more complicated. In some cir-
cumstances we are not interested in the size, orientation, and internal structure of a body,
we can treat the body as a particle, concentrate on its translational motion and ignore all the
other motions. For example, we can describe the motion of a ship sailing down a river or a
car traveling on a street as a particle motion—for most purposes it is sufficient to know the
position of the center of the ship or the car as a function of time.

You must be aware that an object can be treated as a particle in one situation but not in
another. The earth behaves pretty much like a particle if we are interested only in its orbital
motion around the sun. If we study the rotation of the earth (revolve on its own axis), how-
ever, the earth is not a particle at all.

It is a very useful method in physics to simplify an object as an ideal model which helps
us to solve the major problem in a subject. You will use more ideal models in the other parts

of this course.
3. Time interval and time

It is necessary to distinguish two concepts, time interval and time. When we say time in
physics, we mean a give instant. For example, some scheduled flight takes off at 8 : 00 am
from Beijing, lands at 11 : 00 am on Kunming, 8 o’clock is an instant and so is 11 o’clock.
The 3 hours that the whole flying lasts is a time interval. The position of a moving particle is
corresponding to a given instant labeled with ¢ while the distance it passed is corresponding

to a given time interval labeled with Az.

§ 1-2 Position Vector and Displacement

1. Position vector

When we describe the motion of a particle, the first question is: “Where is it?”. In
three dimensional world, we need a vector to answer this question. We locate a particle by a
vector r, extending from the origin of the coordinate system to the particle’s position as in
Fig.1-2. Thus,

A r=xi+ yj+ zk ‘ (1-1
in which, i, j and k are unit vectors and x, y and z are the components of the vector r. The
components can be positive, negative or zero.

We shall define position, displacement, velocity and acceleration for the general case of
three dimensions. To simplify the figures, we shall illustrate them in two dimensions in the
rest of this chapter.




2. Position function

Mechanical motion is defined as the process of change in position with time, In princi-

ple, the position vector can be correlated with the

time by means of a vec tor function ¥
r=r() (1-2a)
~
Its three components are written by the following S

scalar functions v ! P
T
z=2x(), y=y{), z = =2(2) (1-2b) 4
T 4'————|

Eq. (1-2a) or (1-2b) is defined as the position func- = l X
tion that determines the location of a particle at any z \\\J///
given time. Combining Eq. (1-1) and (1-2b), we
have z
r=zx@)i+ y@)j+ z()k 1-3) Figure 1-2 Position vector

which is equivalent with Eq. (1-2a) and (1-2b).
The path equation can be obtained by eliminating z from Eq. (1-2b):
flz,y,2) =0
If the path of a particle i5 a straight line, the motion is called as a rectilinear motion; if the

path is a curve, the motion is called as a curvilinear motion.
3. Displacement

Displacement is the change in position during a given time interval. In Fig. 1-3, at time

t the particle is at point A, given by position vector r=0A. At a later time ¢,, the particle

will be at B with r,=0B. Although the particle has moved along the arc AB=AS, the dis-
placement is the vector given by A
AB = 0B — 0OA

or ' Ar=r —r . (1-4)

| Note that displacement indicates the change in posi-

B tion, not the path length over the same time inter-

Ar val. Displacement is a vector, its magnitude |Ar| is

the length of the chord AB; path is a scalar As

) =AB, the length of the arc AB. In most cases,

|Ar|#As (Fig. 1-3), only in the limiting case At—

0, |Ar| can be regarded equal to As. For example, a

0 X

Figure 1-3 Displacement Ar during time M&0 walks from point A along the rim of a circle of

interval Az radius R for half a round, his displacement is 2R,
but path is ®R. A particle moves back and forth in «
axis for one period, its displacement is zero, but path equals to 24 (A is the amplitude).
You should also be aware of the difference between |Ar| and Ar.

4




§ 1-3  Velocity and Acceleration

1. Velocity

The second question to describe the motion of a particle is “How fast is the change of
position?”. If Ar is the displacement that occurs during the time interval Az , its average ve-

locity for this interval is defined as

Yy =

RIE

The direction of average velocity points in the same direction of displacement (Fig. 1-3); the
magnitude of it equals |Ar}/At. Obviously, average velocity is related to the specified time
interval Az, and it takes into account only the net displacement in the time interval A¢, ig-
nores the details of the motion, and gives no credits for back and forth motion or the length
of the path.

To describe the motion of a particle at a given time ¢ or at a given point, we must make
At very small. The instantaneous velocity. at time ¢ is obtained by evaluating Ar/At in the
limit that At approaches zero

v = lim ar —ar
a—wq At de

Thus, the instantaneous velocity is defined as the time derivation of the position vector.

(1-5)

Direction of instantaneous velocity ;

To determine the direction of v at A, let us

B’ B

see Fig. 1-4, When At approaches 0, point B ép-
proaches point A, as indicated by B', B",...
With the vector AB -changing continuously in
both magnitude and direction, in the limit when

B is very close to A, AB=Ar coincides in direc-

tion with the tangent at A, therefore, the in-

I A
stantaneous velocity is a vector tangent to the i
path, and points to the advance direction. Figure 1-4 The velocity is tangent
Magnitude of instantaneous velocity; to the path at A.

Substituting r from Eq. (1-3) into Eq. (1-5) gives

_d, . , _dx,  dy,  dz
v—d—t(xt-}-yj—“]—zk)— dtl+ dt"+d—tk (1-6)
or v=ud+ v,j+ vk (1-7
As we see, the three components of the velocity vector are given by '
~dz _dy _dz
TR T T @ 1-8

and the magnitude of the velocity is




v=Avl+ v+ -9

For the case of the motion in a plane, angle 8 formed between v and +x direction is deter-
mined by tgf=v,/v. as shown in Fig. 1-5, usually used to indicate the direction of velocity.

Velocity and speed .

Y On the other hand, the magnitude of velocity
vector can be written as
=y = | 97 i 120
v=|yv| =| ar ——E_rg Ar (1-10)
Let As represent the path length over At, which is
0 X given by the length of the arc AB (Fig. 1-3), and the

closer B is to A, the closer the magnitude of Ar is to
Figure 1-5 Velocity in two dimension  As, that is

lim 1ar] _ 1
Y]
therefore ) v = lim 1ar} = lim As _ ds (1-11D

_ awo At a0 &t de
where As/At, the path length divided by the time taken, is called the average speed, so ds/d¢
is the instantaneous speed. Note that speed is a scalar, and Eq. (1-11) means that the magni-
tude of instantaneous velocity equals instantaneous speed, which can be briefly called as ve-
locity and speed.
The unit of speed is m/s, that is, meter per second in SI system.
Example 1-1 The position of a particle moving in z-y plane is given by z = R

. +Rcos wt, y=R sin wt, here R=1m, w=%/s.

Calculate: (1) The path function f(x,y)=0;
(2) Velocity at any time; '
(3) Position vector at t=0 and t="6s, the displacement Ar and path length As
during this time interval.
Solution
(1) Rearrange the position function as

£ — R =R cos wt

\ y=Rsin wt’

then we have (x — R)* + y* = R? P
This is the path function of a circle with radius R and |
the position of center locates at (R, 0) as Fig. 1-6 0 I ar
shows.

dx dy - B(R,-R)

(2) v,=d—t=—Rw sin wt v,=a=Ra) cos wt
v=—Rw sin wti+Rw cos wtj Figure 1-6 for example 1-1



v=" vi-+vt —Ro=— m/s

4
which means that the motion is a circular motion with constant speed. The angle § between v

and +z direction is given by A
tgf = v,/v., = — ctg wt
By inspection of the signs of v, and v, at the particular time, you can determine which quad-

rant the angle is in.
(3) When t=0, we have ro=2Ri
represented by QA, and at t==6s

r, = (R + R cos %rc)i + R sin %nj

that is r,=Ri— Rj
represented by OB. The displacement during At=6s is
Ar=r, —ro=— Ri — Rj
represented by AB in Fig. 1-6,
lar) = V(—R?*+ (—R)?¥=+v2 R=1.41m
while the path length during the same At is

As=arcAOB=%1tR=4.7lm

2. Acceleration

The path of a particle moving in two or three dimensions is a curve in general, its veloci-
ty changes both in magnitude and in direction. The magnitude of the velocity changes when
the particle speeds up or slows down. The direction of the velocity changes because the ve-
locity is tangent to the path and the path bend continuously. Fig. 1-6 indicates the velocity v
at time ¢, and v, at t,, corresponding to the position A and B, respectively. The change in
velocity during the time interval At=¢, —¢, is represented by Av in the vector triangle in
which v+Av=v,, then Av=vp,—v. To describe the average rate of change in’ velocity for the
interval Az, the average acceleration is defined by

' _ v
Ar
Using the same method as in definition of velocity, the instantaneous acceleration at time ¢,
referred simply as acceleration is defined by

. Av  dv
= 2_13) ~=q 1-12>

which is the time derivation of velocity vector.
Direction of acceleration
Acceleration vector has the same direction as the limit direction of change in velocity
when Atz —0, which is always pointing toward the concavity of the curve and, because Av is
always in the direction in which the curve bends, as shown in Fig. 1-7. Suppose that the di-
7




rection the acceleration is at an angle of a to the

Y velocity, a<(90°, a=>90°, and a=90° corresponding
to the cases of v, |>[v]|, |n|<|Iv| and |v,|=|v
| » respectively. It is important to be aware that
there is an acceleration whenever the velocity

0 s ‘ X changes either in magnitude or in direction.

Magnitude of acceleration:

Figure 1-7  Acceleration in curvilinear mo-

From Eq. (1-5), we can also write Eq. (1-12)

tion in the form

_dv_ d¥

a d_t = F (1-13)

Substituting Eq. 1-3 into Eq. 1-13 gives
_ ¢z
ds®
or a=a,i+a,j+ak (1-14)
The three components of acceleration are given by

_ d*x _d¥y _d%
“SF HTF AT

Pttt

(1-15)

and the magnitude of the acceleration is

a = Aat+ a2+ a? ' -16)

The unit of acceleration is m/s? in SI system.

In the case of a motion in z-y plane, suppose ¢

is the angle formed by @ and +y direction, thus, X

tgp = 22 Q-17)

az

Example 1-2 Suppose the position function is
the same as in example 1-1. Find the acceleration
at any time. Figure 1-8§ for example 1-2

Solution From the result of example 1-1, we have

- do dv,
a, = — = — Rw? cos wt a, = 2 =— R’ sin wt
dt ’ ’ ds

2
a= af,—{—af,=Rw2=%m/sz=0.62m/s2

which means that the magnitude of a is a constant, the direction of it can be represented by

" angle a between a and +x direction, and

For example, if t=3, tg a=1tg %T"-—- —1, because a,>>0, a,<{0, so that a= —=x/4, in the

forth quadrant, as shown in Fig. 1-8. On the other hand, we can rewrite 4. and a, as

8
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a, =— (x — R)&?, a, =— yo*/that is/a = — &*[(z — R)i + yj]
Note that, there is a vector
R = (z — R)i + yj
which is pointing from the center of the circle to the position of particle in Fig. 1-8, therefore
a =— 'R
which means the acceleration is always pointing toward the center of the circle. So it is called
centripetal acceleration.

Example 1-3 A particle moves so that its position as a function of time in SI unit is r(z)

=2ti+(%z2—5t+3)j. Calculate (1)r; (2)v; (3da,when t=2s.

Solution
(1) r,==4i—5j
@) v1=((ii—':£=2, v,=§%’=t—5. when t=2, v,,=2, v,,=—3

dv, do, ,
(3) a,=ft—=0, a,=-81;~=1, a=j, a=|a|=1 m/s?

a is pointing in +y direction, so that the angle u
between @ and +x direction is 90°.

Example 1-4 Someone standing on a cliff,
pulls a boat by a pulley, as shown in Fig. 1-9. Sup-
pose that the height of the cliff is &, the rate of the

rope pulled is #. Find.
(1) the velocity of the boat;
(2) its acceleration. Figure 1-9 for example 1-4
Solution Because the motion of the boat is in one dimension, st x axis pointing right,
choose the origin at the foot point of the pulley, and let { representing the variable length of

the rope at any time. So that, position vector of the boat is

= xi, Note that 2 = [ — h? or x = (I* — R)V?
take time derivation of =,
,d
%z_f:?::}’ here ‘%{:" —u is the rate of rope shortened, then the speed of

boat is

dx l vt + A?

V== =— Yy — =— -
dt x x

which is the velocity as a function of coordinate. The negative sign indicates the velocity is in

the —x direction. The acceleration of the boat is then




