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CHAPTER

Introduction to RF
electronics

Radio-frequency (RF) electronics differ from other electronics because the higher
frequencies make some circuit operation a little hard to understand. Stray
capacitance and stray inductance afflict these circuits. Stray capacitance is the
capacitance that exists between conductors of the circuit, between conductors or
components and ground, or between components. Stray inductance is the normal in-
ductance of the conductors that connect components, as well as internal component,
inductances. These stray parameters are not usually important at dc and low ac
frequencies, but as the frequency increases, they become a much larger proportion
of the total. In some older very high frequency (VHF) TV tuners and VHF communi-
cations receiver front ends, the stray capacitances were sufficiently large to tune the
circuits, so no actual discrete tuning capacitors were needed.

Also, skin effect exists at RF. The term skin effect refers to the fact that ac flows
only on the outside portion of the conductor, while dc flows through the entire con-
ductor. As frequency increases, skin effect produces a smaller zone of conduction
and a correspondingly higher value of ac resistance compared with de resistance.

Another problem with RF circuits is that the signals find it easier to radiate both
from the circuit and within the circuit. Thus, coupling effects between elements of
the circuit, between the circuit and its environment, and from the environment to
the circuit become a lot more critical at RI Interference and other strange effects
are found at RF that are missing in dc circuits and are negligible in most low-
frequency ac circuits.

The electromagnetic spectrum

When an RF electrical signal radiates, it becones an electromagnetic wave that
includes not only radio signals, but also infrared, visible light, ultraviolet light,
X-rays, gamma rays, and others. Before proceeding with RF electronic circuits,
therefore, take a look at the electromagnetic spectrum.



2 Imtroduction to RF electronics

The electromagnetic spectrum (Fig. 1-1) is broken into bands for the sake of
convenience and identification. The spectrum extends from the very lowest ac fre-
quencies and continues well past visible light frequencies into the X-ray and gamma-
ray region. The extremely low frequency (ELF) range includes ac power-line
frequencies as well as other low frequencies in the 25- to 100-hertz (Hz) region. The
U.S. Navy uses these frequencies for submarine cornmunications.
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1-1 The electromagnetic spectrum from VLF to X-ray. The RF region covers from less than
100 kHz to 300 GHz.

The very low frequency (VLF) region extends from just above the ELF region,
although most authorities peg it to frequencies of 10 to 100 kilohertz (kHz). The low-
frequency (LF) region runs from 100 to 1000 kHz—or 1 megahertz (MHz). The
medium-wave (MW) or medium-frequency (MF) region runs from 1 to 3 MHz. The
amplitude-modulated (AM) broadcast band (540 to 1630 kHz) spans portions of the
LF and MF bands.

The high-frequency (HF) region, also called the shortwave bands (SW), runs
from 3 to 30 MHz. The VHF band starts at 30 MHz and runs to 300 MHz. This region
includes the frequency-modulated (FM) broadcast band, public utilities, some tele-
vision stations, aviation, and amateur radio bands. The ultrahigh frequencies (UHF)
run from 300 to 900 MHz and include many of the same services as VHF. The mi-
crowave region begins above the UHF region, at 900 or 1000 MHz, depending on
source authority.

You might well ask how microwaves differ from other electromagnetic waves.
Microwaves almost become a separate topic in the study of RF circuits because at
these frequencies the wavelength approximates the physical size of ordinary elec-
tronic components. Thus, components behave differently at microwave frequencies
than they do at lower frequencies. At microwave frequencies, a 0.5-W metal film re-
sistor, for example, looks like a complex RLC network with distributed . and C val-
ues—and a surprisingly different R value. These tiniest of distributed components
have immense significance at microwave frequencies, even though they can be ig-
nored as negligible at lower RF's.

Before examining RF theory, first review some background and fundarmentals.

Units and physical constants

In accordance with standard engineering and scientific practice, all units in
this book will be in either the CGS (centimeter-gram-second) or MKS (meter-
kilogram-second) system unless otherwise specified. Because the metric system de-
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pends on using muitiplying prefixes on the basic units, a table of common metric
prefixes (Table 1-1) is provided. Table 1-2 gives the standard physical units. Table
1-3 gives physical constants of interest in this and other chapters. Table 1-4 gives
some common conversion factors.

Table 1-1. Metric prefixes

Metric prefix Multiplying factor Symbol
tera 1012 T
giga 10* G
mega 108 M
kilo 107 K
hecto 102 h
deka 10 da
deci 107! d
centi 1072 ¢
illi 1073 m
micro 1076 u
nano 107° n
pico 10712 p
“femto 10-15 f
atto 10-18 a

Table 1-2, Units of measure
Quantity Unit Symbol

Capacitance farad F

Electric charge coulomb Q

Conductance mhos

Conductivity mhos/meter /m

Current ampere A

Energy Jjoule {watt-second) i

Field volts/meter E

Flux linkage weber (volt/second)

Frequency hertz Hz

Inductance henry H

Length meter m

Mass gram g

Power watt w

Resistance ohm [}

Time second s

Velocity meter/second ms

Electric potential volt \Y
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Table 1-3. Physical constants

Constant Value Symbol
Boltzmann's constant 1.38 X 107 J/K K
Electric chart (e™) 1.6 X 10°%C q
Electron (volt) 1.6 X 10719J eV
Electron (mass) 9.12 X 10~ kg m
Permeability of free space 47 X 1077 H/m Uy
Permitivity of free space 8.85 X 1072 F/m €
Planck’s constant 6.626 X 1074 J-s h
Velocity of electromagnetic waves 3 X 108 mvs [«
Pi(m) 3.1416 ...... [

Table 1-4. Conversion factors

1inch =2.54 cm

1 inch = 25.4 mm

1 foot = (.305 m

1 statute mile = 1.61 km

I nautical mile = 6,080 feet (6,000 feet)*

1 statute mile = 5,280 feet

1 mile =0.001in =254 X 10~
1kg =221b

1 neper = 8.686 dB

1 gauss = 10,000 teslas

a Some navigators use 6,000 feet for ease of calculation. The
nautical mile is 1/360 of the Earth'’s circumiference at the
equator, more or less.

Wavelength and frequency

For all wave forms, the velocity, wavelength, and frequency are related so that
the product of frequency and wavelength is equal to the velocity. For radiowaves,
this relationship can be expressed in the following form:

AFVe =, (1-1)
where

A = wavelength in meters (m)

F = frequency in hertz (Hz)

€ = dielectric constant of the propagation medjum

¢ = velocity of light (300,000,000 nvs).

The dielectric constant (€) is a property of the medium in which the wave prop-
agates. The value of € is defined as 1.000 for a perfect vacuum and very nearly 1.0 for
dry air (typically 1.006). In most practical applications, the value of € in dry air is
taken to be 1.000. For media other than air or vacuum, however, the velocity of prop-
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agation is slower and the value of € relative to a vacuum is higher. Teflon, for exam-
ple, can be made with € values from about 2 to 11.
Equation (1-1) is more commonly expressed in the forms of Eqs. (1-2) and

(1-3):

(e

X Y (1-2)
and
F=—"x (1-3)
AVe

[All terms are as defined for Eq. (1-1).]

Microwave letter bands

During World War II, the U.S. military began using microwaves in radar and
other applications. For security reasons, alphabetic letter designations were adopted
for each band in the microwave region. Because the letter designations became in-
grained, they are still used throughout industry and the defense establishment. Un-
fortunately, some confusion exists because there are at least three systems currently
in use: pre-1970 military (Table 1-5), post-1970 military (Table 1-6), and the IEEE
and industry standard (Table 1-7). Additional confusion is created because the mili-
tary and defense industry use both pre- and post-1970 designations simultaneously
and industry often uses military rather than IEEE designations. The old military des-
ignations (Table 1-5) persist as a matter of habit.

Skin effect

There are three reasons why ordinary lumped constant electronic components
do not work well at microwave frequencies. The first, mentioned earlier in this chap-
ter, is that component size and lead lengths approximate microwave wavelengths.

Table 1-5. Old U.S. military
microwave frequency bands
(WWII-1970)

Band designation Frequency range
225-390 MHz
390-1550 MHz
1550-3900 MHz
3900-6200 MHz
6.2-10.9 GHz
10.9-36 GHz
36-46 GHz
46-56 GHz
56-100 GHz

O<OFR®WO®ET- T
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Table 1-6. New U.S. military microwave
frequency bands (Post-1970)

Band designation

BrRa—TommEgaow»

Frequency range
100-250 MHz
250-500 MHz
500~1000 MHz :
1000-2000 MHz .
2000-3000 MHz
3000-4000 MHz
40006000 MHz
6000-8000 MHz
8000--10000 MHz
10-20 GHz
20-40 GHz
40-80 GHz
60-100 GHz

Table 1-7. IEEE/Industry standard

frequency bands
Band designation Frequency range
HF 3-30 MHz
VHF 0-300 MHz
UHF 300-1000 MHz
L 1000--2000 MHz %
S 2000-4000 MHz
C 4000-8000 MHz
X 8000-12000 MHz ;
Ku 12-18 GHz
K 18-27 GHz «
Ka 27-40 GHz
Millimeter 40-300 GHz
Submillimeter >300 GHz

The second is that distributed values of inductance and capacitance become signifi-
cant at these frequencies. The third is the phenomenon of skin effect. While de cur-
rent flows in the entire cross section of the conductor, ac flows in a narrow band near

the surface, Current density falls off exponentially from the surface of the conductor

toward the center (Fig. 1-2). At the critical depth (8, also called the depth of pene-
tration), the current density is 1/e = 1/2.718 = 0.368 of the surface current density.
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1-2

In ac circuits, the current flows
only in the outer region of the
conductor. This effect is
frequency-sensitive and it
becomes a serious consideration
at higher RF frequencies.

The value of 8 is a function of operating frequency, the permeability (u) of the con-
ductor, and the conductivity (o). Equation (1-4) gives the relationship.
8 = critical depth

/ 1 .
——— 1-4
= 2uFop a-9
F = frequency in hertz

1 = permeability in henrys per meter
o = conductivity in mhos per meter.

where

RF components, layout, and construction

Radio-frequency components and circuits differ from those of other frequencies
principally because the unaccounted for “stray” inductance and capacitance forms a
significant portion of the entire inductance and capacitance in the circuit. Consider
a tuning circuit consisting of a 100-pF capacitor and a 1-p§l inductor. According to
an equation that you will learn in a subsequent chapter, this combination should res-
onate at an RF frequency of about 15.92 MHz. But suppose the circuit is poorly laid
out and there is 25 pF of stray capacitance in the circuit. This capacitance could
come from the interaction of the capacitor and inductor leads with the chassis or
with other components in the circuit. Alternatively, the input capacitance of a tran-
sistor or integrated circuit (IC) aruplifier can contribute to the total value of the
“strays” in the circuit (one popular RF IC lists 7 pF of input capacitance). So, what
does this extra 25 pF do to our circuit? It is in parallel with the 100-pF discrete
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capacitor so it produces a total of 125 pF. Reworking the resonance equation with
125 pF instead of 100 pF reduces the resonant frequency to 14.24 MHz.

A similar situation is seen with stray inductance. All current-carrying conduc-
tors exhibit a small inductance. In low-frequency circuits, this inductance is not suf-
ficiently large to cause anyone concern (even in some lower HF band circuits), but
as frequencies pass from upper HF to the VHF region, strays become terribly impor-
tant. At those frequencies, the stray inductance becomes a significant portion of to-
tal circuit inductance. .

Layout is important in RF circuits because it can reduce the effects of stray ca-
pacitance and inductance. A good strategy is to use broad printed circuit tracks at
RF, rather than wires, for interconnection. I've seen circuits that worked poorly
when wired with #28 Kovar-covered “wire-wrap” wire become quite acceptable
when redone on a printed circuit board using broad (which means low-inductance)
tracks.

Figure 1-3 shows a sample printed circuit board layout for a siaple RF amplifier
circuit. The key feature in this circuit is the wide printed circuit tracks and short
distances. These tactics reduce stray inductance and will make the circuit more
predictable.

Although not shown in Fig. 1-3, the top (components) side-of the printed circuit
board will be all copper, except for space to allow the components to interface with
the bottorm-side printed tracks. This layer is called the “ground plane” side of the
board.

Typical RF printed circuit

Impedance matching in RF circuits

In low-frequency circuits, most of the amplifiers are voltage amplifiers. The re-
quirement for these circuits is that the source impedance must be very low com-
pared with the load impedance. A sensor or signal source might have an output
impedance of, for example, 25 2. As long as the input impedance of the amplifier re-
ceiving that signal is very large relative to 25 Q, the circuit will function. “Very large”
typically means greater than 10 times, although in some cases greater than 100 times
is preferred. For the 25-) signal source, therefore, even the most stringent case is
met by an input impedance of 2500 £}, which is very far below the typical input im-
pedance of real amplifiers.

RF circuits are a little different. The amplifiers are usually specified in terms of
power parameters, even when the power level is very tiny. In most cases, the RF cir-
cuit will have some fixed system impedance (50, 75, 300, and 600  being common,
with 50 £ being nearly universal), and all elements of the circuit are expected to




