N\
REHANAE St (EED),

Use Case Maps

for
Object-Oriented

ATEHRENRZRLR

J..) =
A
R. J. A. Buhr -
R. S. Casselman '
RN R e

: ™ N ‘h, "'""". L . ; iR is e
. - t“—““t = % ant o T P -
- 3 ﬂ..l"'c"" :—;': '____7 E.‘;“‘“} :‘ 3 -y e s
n S =G A . o "N .
R o r—— — R ; 3
- L ! o ¥ -] - L o b 1

Use Case Maps
for
Object-Oriented
Systems

AT
HEXRARGH =Y
& L PIE

R.J.A. Buhr
R.S. Casselman

BEXFHEH

Prentice-Hall International, Inc.

©1996 by Prentice Hall, Inc.

Original edition published by Prentice Hall, Inc., a Simon & Schuster Compa-
ny.

Prentice Hall 2 A] ##AUE X LR EPEBEN(ROEHEFEREINT
B BT K & 7 O R IR R AT A A,

EBEFIT Z WA, KA EE BEFE, A3 AEAS PR R,
B E A Prentice Hall MBI HIRE, THEEFTHH,

AR TSR FENS LS 01-98-0075

BREREE (CIP) B

AT E MM REF LWL E . FE30/(E)A#kBuhr,R.J. AL,
() F /K& (Casselman,R. S.) F. — B HIRR. — JL50 £ K% Rt
1998.1

CREZIFEIEFEAD

ISBN 7-302-02796-X

1. fee 1. Ofi @F I. HAMNREFT-BIFEIT V.
TP312

o R A B B4R CIP BB T (98) 58 02516 &

HIRE : HHERE H R QU ER IR N HR% 100084)
http:// www. tup. tsinghua. edu. cn

EDRIE . TEHEKFENRI

EE7E : FRBE BRI AR AT

. 850X 1168 1/32 EA3K. 10.25

1998 E 2 HE 1R 1998 £ 8 A% 3 KEIW

: ISBN 7-302-02796-X/TP « 1460

: 7001~12000

: 20.00 70

&
S & do P

H kR Al

mif

RO RZEE SPRERLE, AR E—ERERE R
WAL AR BN AR KRS TR S E M S
PR FR e R IR B s AT SNE 2 5 LER W L. 1R
AR TR, AN DU A 5 B AEAT BT 1 6 A0 45 10 58 HL
B, ENEEW R, th 0105 A s 2 5 S SCRORREUE B
HIBE ST, BT I, 7 E K BZ T MATHRFEEFHERRAH
B —RE T R AR R R T 8, W, fE KRR
DRI TIRBERER A FER, 8RR B Lk m iR
ZHh, BEFLEE VIR RIERR, B ERUrEETRA
—EMEMN G BHISUEREMEABESE . HW LX) E
BYRE, RATPGE T 7 AR YU 2 7 W R A B B, AT
BV R EHLZED AR 6 A 2 F1)R i A i, #47)
B, SaERM S LT, REEERER TR
Prentice Hall 23 R M 402 th REAL X 0 & 15 K5 [B S 7K S 1
M FIANRE S FFE, MM AERE T HERH, HESM &K
BV = A BRI

ERES N T

Prentice Hall 2% 5]

1997.11

Foreword

R ay Buhr is one of the few people who has been able to combine sound software engi-
neering practices with new theories and approaches. Ray has a credo: There is nothing as
practical as a good theory. Whenever Ray presents something new we have learned to pay
close attention, because his contributions to our discipline have, over the years, been
adopted not only by the academic community but most importantly by practitioners of
software development.

Now Ray Buhr together with Ron Casselman have given us a new contribution: use
case maps. The authors have noticed how excellent software engineers have been work-
ing for years and observed how they intuitively reasoned about the behavior of systems
and systems components. They have identified the need for a semi-formal tool (not math-
ematical) to express use case behavior at different levels of abstraction. This tool captures
the way these superb designers work and makes that available to the rest of us.

Use cases have been accepted by many practitioners of modern software develop-
ment. Requirements are statically expressed in a use case model in terms of actor and use
case objects. The behavior of this model is described either in prose or by using interac-
tion diagrams and state transition diagrams. Then each use case is mapped onto an object
model. An object model is a static model of the design of the system. The mapping is
described again in terms of interaction diagrams and state transition diagrams. This is

basically what the development process looks like for those methods that have adopted
use case thinking.

vit

viii Foreword

Use case maps fill a very important need. They fill the gap between verbal descrip-
tions and detailed descriptions in terms of interaction diagrams. Interaction diagrams focus
on the interaction between components, let these be actors, subsystems, objects, or the
like. The responsibilities of the components are verbal annotations to the interaction dia-
grams. Use case maps allow us to reason about the responsibilities of the components
without going into details about the messaging between the components. Using use case

_ maps frees the designers from having to hold their own mental models of the dynamic
behavior when they do detailed design. Instead the designers can focus their thinking on
other higher level issues, such as the alternative object structures to realize the use cases.
Therefore use case maps will help us to iterate over the use case model and the object
models until we have identified the most feasible system. We will be able to build more
well-structured systems—more robust and reusable systems.

Use case maps are one of the most important contributions to our understanding of
use cases. 1 highly recommend this book to people who already have learned the basics of
use cases from my own books or papers and who want to take a step further. I also recom-
mend this book to those people who have learned about basic object-orientation from, for
instance, Grady Booch, Derek Coleman, Brian Henderson-Sellers, Steve Mellor, Jim
Odell, Jim Rumbugh, and Rebecca Wirfs-Brock. This is a more advanced book and read-

ing it will provide you with new insights in the very difficult discipline of developing soft-
ware.

Ivar Jacobson

Preface

Our justification for adding yet another book to an overcrowded field is that it offers
something new: use case maps. In this preface we try to give you a quick glimpse of why
you should be interested in them.

Use cases [18] are structured prose descriptions of interaction scenarios between a
system to be designed and users of the system. Use cases explain preconditions, postcon-
ditions, and the scenario itself (or possibly a set of scenarios that are so closely related that
they can be better described as a theme with variations). The presumption is that a well
chosen set of critical scenarios is a good starting point for design and, ultimately, for test-
ing the implementation. Use case maps provide a visual notation for use cases and also a
means of extending them into high-level design. However, understanding use case maps
does not depend on familiarity with use cases. They are a new abstraction in their own
right. To understand the nature of this abstraction, why it is new and why we think it is
useful, we need to fill in some background.

Ever increasing demands on software for more of everything—functionality, flexi-
bility, reusability, extensibility, performance, robustness, distributed operation—seem to
ensure that software complexity keeps pushing the limits of both tools and human intel-
lect. Tools—new languages, compilers, operating systems, application packages, CASE
tools—provide more productive capacity (or try to) but the problems always seem to out-
pace them. This historical problem with software is showing no signs of going away.

xiii

Xiv Preface

Systems—sets of collaborating components that jointly achieve some overall pur-
pose—are at the heart of all modern applications of computers, as the following examples
indicate. Object-oriented programs in execution, even considered purely in software terms,
are systems (of collaborating objects). They are also components of larger systems: the
application environments in which they run. Computer communication networks are sys-
tems that are part software, part physical. Applications distributed over such networks are
systems that are also part software, part physical, for example, they contain collaborating
processes, objects, clients, and servers, to name but a few of many possibilities. Comput-
ers embedded as components in automobiles, aircraft, nuclear power plants, and medical
instruments are systems. Because, by definition, the operation of a system is decentralized
among its collaborating components, the purposeful behaviour of a system as a whole is
difficult to visualize. This is particularly true with software, for a number of reasons. Soft-
ware is nonphysical, the code we see in its source files may express the components of the
running system only in a somewhat indirect fashion, and the conceptual world of program-
ming languages is typically weak on system concepts (for example, the same object ori-
ented programs that we said above are systems, do not look like systems when you read
the code, just sets of class definitions).

Use case maps provide a notation to aid humans in expressing and reasoning about
large-grained behaviour patterns in systems.

One of the most difficult problems with systems is understanding and expressing the
large-grained behaviour patterns that will be jointly achieved by the components of a sys-
tem while the system is running. To understand this term, think of a stimulus like a mouse
click or an interrupt from a communications device that triggers some chain of causally
related responsibilities performed in software (or in a mix of software and intervening
hardware in a distributed system). One way of looking at this is from outside the system,
for example, a mouse click causes a file icon to open on a screen (the system as a whole
has the responsibility of making this happen). Another way to view this is from inside, for
example, the responsibilities of handling the click are decentralized in a set of objects in a
running program and the click propagates through this set by means of a causally con-
nected sequence of interobject collaborations. This causes objects along the way to per-
form responsibilities in relation to the click. This ultimately results in one of the objects
causing the file icon to open on the screen. Either way, the chain of causally related
responsibilities is a “large-grained behaviour pattern”.

Use case maps provide notations for indicating intended coupling between large-
grained behaviour patterns.

An important design issue with large-grained behaviour patterns is that several may
be in progress through a system at the same time, and may be coupled to each other. Pat-
terns that are independent may simply be interleaved, but this is not what we mean by
“coupled”. Coupling may be intended or not. An example of an intended coupling is the
following: a pattern triggered by a mouse click requests data that will, in the normal course
of events, come from a physically remote part of the system through some large-grained
behaviour pattern initiated there; the original mouse-initiated pattern must wait part way
through for the remotely initiated one. On the other hand, interpattern coupling may be
unintended, and cause errors. In other words there may be conflicts between patterns.

., 1

Preface xv

Use case maps bridge a modeling gap between requirements and design.

Large-grained behaviour patterns seem to belong to-both requirements and high-
level design. Expressing them only with prose use cases at the requirements level leaves a
big gap between requirements and design. Expressing them during design without use
case maps requires making commitments to realization details. Use case maps fill a gap in
the suite of design models by providing a way of representing large-grained behaviour pat-
terns as first-class abstractions above the level of realization details. It is true that people
design systems successfully without use case maps by holding the patterns in their minds,
but the mental models are often lost afterwards. There is a chicken-and-egg problem: The
patterns won’t happen in the actual system until all the details are resolved, but designers
need to think about the patterns in a high-level way to make high-level decisions about
how to realize them, before the details are resolved.

Use case maps offer something new in relation to architecture, They provide a
behavioural framework for making architectural decisions at a high level of design, and
also for characterizing behaviour at the architectural level once the architecture is
decided.

The high-level structural form of a system, above the level of the details of its com-
ponents, is often called its architecture. Architecture is hard to define in the abstract, but
companies that make products with software in them have a view of what it is. Architec-
ture is defined by answers to high-level questions such as the following: How many com-
ponents of what types should there be in the running system? How should components be
clustered into large-grained units like layers or peer subsystems? What types of structures
should connect components into collaborating teams to handle higher-level responsibili-
ties, for example, structures like pipelines, rings, or networks? What additional structures
are needed to monitor for failures and to recover from them? Should component structures
be fixed or dynamic? How should responsibilities be allocated among the components of
the structures? Which structures are likely to give the best performance along critical paths
through them, or be the most robust in the presence of failures? Which structures are likely
to give the best flexibility, reusability and extensibility? What structures are needed to
build families of products that may use different mixes of components? And so forth. Such
questions are at the same level of abstraction as large-grained behaviour patterns and need
to be related to them. However, while we have had adequate means in the past for repre-
senting the structures of architecture, there has been a missing link up till now: a good way
of expressing the large-grained behaviour patterns of architecture.

Use case maps provide a new technique for capturing large-grained behaviour pat-
terns as concrete work products that may be saved, manipulated, extended, and reused to
guide implementation, maintenance, and evolution.)

People making high-level decisions need to think in a high-level way. People mak-
ing detailed decisions to implement high-level ones need to understand the high-level
thinking in order to get the details right. People making changes to details for maintenance
or evolution purposes need to understand the high level-thinking in order not to make
changes that inadvertently damage the big picture. Capturing the high-level thinking in
concrete form helps with all of these things.

9810036

i Preface

Use case maps bring real time and object-oriented issues together under a common
conceptual umbrella.

Object-oriented programming is important as a technique for improving reusability
and extensibility of software. As explained further in Chapter 1, properties of systems such
as concurrency and robust operation in the presence of failure are often suggested by using
the term real time as a modifier of the term system. The ever increasing demands on soft-
ware for more of everything identified above are creating a need for a broader view of
object oriented programs as systems in their own right and as components of real time sys-
tems. A problem is that this broader view is hard to see at the level of object-oriented pro-
gramming languages. The combination of real time issues, object oriented issues, and
more-of-everything issues creates interesting challenges that have motivated this book.

Use case maps add to the repertoire of patterns available to the designer.

Patterns are currently the focus of much interest in the object oriented community.
Use case maps provide a new kind of pattern that adds to the repertoire of patterns avail-
able for both object-oriented and real time applications.

CONTENT OF THE BOOK

This book stands alone as a comprehensive text on use case maps and their applications to
high-level design of systems. It also shows how to use the maps in a coordinated way with
other standard requirements/design models for object-oriented and real time systems (for
example, prose use cases, class relationship diagrams, collaboration graphs, interaction
sequence diagrams, and so on). However, readers should not look to this book to provide a
comprehensive, step-by-step, life-cycle method that covers all aspects of design and devel-
opment, or to provide a tutorial on basic object-oriented and real time concepts.

ASSUMED PREREQUISITES

Prescribing prerequisites for this book is difficult because it covers so much ground at a
high level of abstraction.

A blanket set of prerequisites for reading it end to end and proceeding directly to
applying it across the range of object-oriented and real time implementation techniques
would be the following: general knowledge of the basic issues and principles of object-ori-
ented programming (with classes and objects) and real time programming (with interrupts
and concurrent processes), with some implementation experience in both areas. This prep-
aration is necessary because this is—deliberately—a relatively short book and it would
take a very long one to tell readers without this background how to fill in all the details for
the wide range of implementation technologies that might be used for these kinds of sys-
tems.

However, the principles of the book are accessible to people with less background
than this. Much of the book is new material introduced from first principles in a tutorial
fashion. As such, much of it can be read and understood at an overview level by relative
novices (for example, second or third year undergraduate university students in computer
science or engineering). At the end of this preface is a guided tour of the book for readers

Preface xvii

with different backgrounds. Readers with only object-oriented background or only real
time systems background can both read a large fraction of the book without additional
preparation.

Although implementation experience would be required to translate this book’s
ideas into practice, and some programming examples are presented in the form of frag-
ments of code in C++ and Smalltalk for those who want a sense of the path to implementa-

tion, the bulk of the book is not in any way dependent on knowledge of the specifics of
particular implementation technologies for software.

The material in this book is intended for a wide audience, including, for example,
real-time programmers, distributed-system programmers, object-oriented programmers,
computer scientists, software engineers, electrical engineers with some software special-
ization, software designers, and software architects.

This book does not aim to provide a tutorial on basic principle of object-orientation
or real time systems. We refer the reader to other books such as Jacobson [18], Selic [27],
Coleman [13], to name a few, for background. We particularly recommend Jacobson for
treatment of the basics of object orientation and the use case approach (as distinct from the

use case map approach) and Selic for a system perspective that combines object-oriented
and real time concerns.

METHODS THAT THESE TECHNIQUES SUPPLEMENT

The techniques of this book supplement a number of other object-oriented and real time
design methods, as follows (in the discussion below we refer to the approach of this book
as UCM, standing for use case maps):

* OOSE, by Jacobson et al [18]: UCM is philosophically compatible with OOSE in
the sense that both focus on system design rather than programming. UCM is com-
plementary to OOSE in the sense that it provides a high-level-design bridge across
the rather large gap between OOSE's use cases and its detailed design approach with
interaction sequence diagrams.

* ROOM, by Selic, Ward, Gulekson [27]: UCM is philosophically compatible with
and complementary with ROOM in the same sense as above. UCM provides a high-
level-design front end that complements the cooperating-state-machines approach
of ROOM.

* OMT, by Rumbaugh et. al. [26]: UCM provides a high-level design front end that
complements OMT in much the same way as above. OMT is more focused on class
than system design. A strong point is its clean, practical notation for representing
class relationships. Otherwise, OMT contains many elements that are superficially
similar to OOSE and ROOM, namely scenario diagrams and state machines, but is
weaker than either from a system design and modelling perspective.

¢ 0OOD, by Booch [3]: Booch has become a de-facto standard on fundamentals. We
agree with many of Booch's observations on the design process. However, we find

xviii Preface

his notations reflect programming issues more than system issues. UCM focuses on
system issues first and brings in programming issues as details later. As such it can
provide a high-level system-design front end to detailed design of object-oriented
programs with Booch’s approach.

* FUSION, by Coleman et al [13]: The Fusion method combines and extends the use
case approach of OOSE with class-based design as in OMT and OOD. UCM can be
used to supplement this approach by providing a transition from use case modeling
to interaction-style diagrams. -

» CRC or Responsibility Driven Design, by Wirfs-Brock, Wilkerson, Wiener [32]:
This approach does not have a systems perspective but does use a front end model-
ing approach that is compatible with UCM. '

e DP (Design Patierns), by Gamma, Helm, Johnson, Vlissides [14]: UCM adds a new
type of high-level reusable pattern expressed with use case maps that complements
DP patterns. UCM and DP patterns together cover a very wide range of problems
and issues.

e SDWA (System Design With Ada [6]) and PVTSD (Practical Visual Techniques in
System Design [7]), by R.J.A. Buhr: SDWA and PVTSD provide concepts, nota-
tions, and IPC patterns for real time systems, that have become standard in the Ada
community. UCM provides techniques that supplement SDWA and PVTSD without
invalidating their basic notions. UCM provides a better model of large-grained
behaviour patterns than PVTSD’s event scenarios. It also provides a more compact
detailed-design notation than either of them.

RELATION TO SYSTEM MODELING TECHNIQUES

The UCM approach comes at system modeling from an entirely different angle than, for
example, state machine models or Petri net models, to name just two of many types of exe-
cutable or mathematical models of systems.

One use of techniques like state machines or Petri nets is to express behaviour
requirements for systems in a precise and relatively complete way, viewing the system as a
black box. Among other things, this enables complex requirements to be checked by auto-
matic techniques, to help spot mistakes before they are built into implementations. The
problem with such approaches from a design perspective is that they do not provide a pro-
gressive path to resolving the high level design issues raised above. They tend to build a
wall between requirements and design. The wall is not important if implementations can
be generated directly from models and maintained and evolved by changing the models,
but this is still out of reach for the kinds of systems addressed by this book.

A different approach is to incorporate techniques like state machines or Petri nets
into an executable system model, to specify the internal logic of the components. Such
models exist and can even be used to generate implementation code, but they are at a
detailed level of design, not the high level we are seeking in this book.

Preface xix

EXPERIENCE WITH THE APPROACH

The approach of this book came partly out of cooperative research and development
projects with industry starting around 1990, partly out of experience teaching university
undergraduate and graduate design classes starting around 1988, and partly from interac-
tions with industry on the application of the techniques that resulted in refining them.

The approach has been thoroughly exercised in the classroom. It has been presented
in approximately the form of this book to students in a series of undergraduate and gradu-
ate courses and several short courses to industry, during the period 1991 to 1995. A gradu-
ate course “Object-Oriented Design of Real Time and Distributed Systems” centering
around this material has been offered several times, including to industry. A one-day train-
ing course on “Designing with Timethreads” (another way of saying “Designing with Use
Case Maps”) has been offered a number of times to industry. Some of the material on real-
time systems has been used for several years in an undergraduate course on design and
programming of real-time systems in a Computer System Engineering program and will
appear in somewhat different form in another textbook that has evolved out of that course.
This classroom experience smoothed the rough edges in the presentation of the ideas.
However, it has also done more than that. Because the total audience has included a large
number of experienced people from industry, the material has had a high level of “reality
checking” that has resulted in a strong focus on practical applicability.

The ideas are relatively new and have not had time to have supporting tools devel-
oped or to have become established in widespread way in industry. So far, we can say that
the techniques have met with enthusiastic response from many students, have acquired
some champions in industry, and are being used on some practical projects, for example,
during design reviews. The issue of tools is a chicken-and-egg one. Widespread use
depends to some extent on tools, but the expense of developing tools is not justified until
there is widespread use. If enough readers of this book judge the techniques are useful,
experience suggests tools will follow.

OUTLINE OF THE BOOK

Chapter 1: Object Oriented and Real Time Come Together. This chapter sets
the stage for the rest of the book. It starts from the premise that application push and
design pull are driving object-oriented and real time issues together. Application
push is the ever increasing demand on software for more of everything—functional-
ity, flexibility, reusability, extensibility, performance, robustness, distributed opera-
tion. Design pull is the need for better design techniques to deal with the issues that
this raises. This chapter associates the terms “object oriented” and “real time” with
software implementation practices that are sufficiently different in detail that bring-
ing the areas together is difficult with current design models. It identifies use case
maps as a new kind of design model that helps to bring them together, and thus
helps to satisfy both application push and design pull.

Preface

Chapter 2: The Behavioural Fabric of Systems. This chapter develops the idea of
use case maps as concrete expressions of an abstract idea called the behavioural fab-
ric. The behavioural fabric is the view we have in our minds of large-grained behav-
iour patterns of systems with which we are familiar. The notation is introduced and
some examples presented taken from the physical and software worlds, including
communicating fax machines and the model-view-controller paradigm of Smalltalk.
Chapter 3: Basic Use Case Map Model. This is a self-contained tutorial on the
basics of the use case map model that explains the notation and provides rules and
guidelines for creating legal maps, interpreting the maps in behaviour terms, binding
the maps to components during design, and working with maps at different scales in
a coordinated way. It defers issues of concurrent paths in maps to Chapter 7.
Chapter 4: A Context for Designing with Use Case Maps. This chapter describes
a context in which design with use case maps may take place in a coordinated man-
ner with other design models. The context positions design models in relation to four
levels of design abstraction (requirements, high-level design, detailed design, imple-
mentation) and three basic domains of separable concerns within the levels (opera-
tion, manufacturing, assembly). The context includes notations for component types
to cover the range of issues identified in Chapter 1.

Chapter 5: A Simple Example. A simple producer-consumer example is used to
take a tour through the suite of models of Chapter 4. A very important feature of this
chapter is that it shows in detail how to deal with the difficult problem of bringing
dynamically changing software run-time structures into the high-level design pic-
ture. For concreteness, C++ code examples are provided.

Chapter 6: Case Study: A Conventional Object-Oriented Application from an
Unconventional Perspective. Here the focus is on showing how to work with the
use case maps to help with the design of a representative object-oriented application,
a graphical user interface system called BGETool. A set of use case maps for this
application is constructed using maps for the model-view-controller paradigm of
Smalltalk as starting points. The case study uses all the design models in a coordi-
nated way at all levels of design and implementation (some code is also provided).
Chapter 7: Advanced Use Case Map Model. This chapter extends the use case
map model of Chapter 3 to include concurrent scenarios that may proceed at unpre-
dictable rates relative to each other, may influence each other, may conflict with
each other, and may fail before completion. It presents design at this level as an
activity that positions components along paths to imply appropriate solution proper-
ties.

Chapter 8: Case Study: High-Level Design of a Real Time, Distributed System.
This chapter focuses on issues in high-level design of a simple distributed applica-
tion that is intended to be implemented using real time techniques, namely concur-

Preface xx

rent processes, timers, and interrupt service routines. It covers the following topics:
discovering processes from maps, factoring maps to give smaller maps for sub-
systems, using maps as invariants for making design trade-offs, and working with
maps at different scales in a coordinated manner. The example is a computer com-
munications problem called the MTU (Message Transfer Utility) that, although
superficially simple, exemplifies many of the characteristics that make designing
real time systems difficult.

Chapter 9: Detailed Design Notation. This chapter provides a general collabora-
tion graph notation that is both particularly simple and particularly widely applica-
ble to a range of object-oriented and real time implementation techniques. It is
positioned here to set the stage for detailed developments in the following two chap-
ters. However, except for an overview section, the focus of the chapter is rather
detailed and most of it is not needed to understand the essence of the following
chapters.

Chapter 10: Case Study: Rounding Out the Real Time, Distributed System
Example. This chapter rounds out the case study, not only in its own terms, but also
in object-oriented terms. It shows how to make the transition from use case maps to

"collaboration graphs with processes in them. It shows how to examine a difficult
detailed issue (dynamic buffering) in a high-level way using use case maps and how
to bring the results back into the detailed domain. It shows how to bring in a class
hierarchy that includes all the components in the maps and collaboration graphs,
including processes, slots, teams, and fixed objects. It illustrates the idea of making
use case maps a common denominator for evaluating trade-offs between real time
and object-oriented issues.

Chapter 11: Patterns. This chapter draws together various patterns threads in this
book and the literature. It does so by sketching some elements that might go into a
patterns handbook that covers a wide range of concerns, including patterns in use
case maps (called path patterns), IPC patterns, layering patterns, object interaction
patterns, construction patterns for objects to fill slots, and construction patterns for
processes and teams. The patterns are illustrated by examples drawn from the MTU
and BGETool case studies.

Chapter 12: Supplementing Familiar Design Methods. This chapter recaps the
design models and the context for design used in this book, summarizes the reasons
for including use case maps in any suite of design models, and suggests how use
case maps may be used to supplement existing design methods.

Appendix A: Notation Summary. Reference cards for the new notations are pro-
vided, as well as a summary of some standard notations that we have borrowed from
elsewhere.

Appendix B: Some Coding Examples. Several code examples are given for pieces

Preface

of the case studies presented in the body of the text. The examples are in the C++
programming language. We have chosen C++ because it is a popular language, not
because the ideas of this text are in any way tied to a specific language. There is

enough explanation of the code that non-C++ programmers should be able to read
and understand it.

A TOUR OF THE BOOK WITH USE CASE MAPS

We provide a simple use case map below to suggest three selective patterns of reading this
book. A path superimposed on a chapter box means read the chapter. It goes without say-
ing that there is a fourth pattern that does not need a map—read the whole book from start
to finish in the order in which it appears.

® @ ©
@ € stan Preconditions:
- (a) advanced readers who want only to skim
I 1. Introdugtion] the new ideas ‘

I 2. Behaviqural Fabric] (b) readers with OO background but not much
RT background who want an overview of the
main ideas as they apply only to 0O

| 3.Basic UCM Model |

: (c) readers with RT background but without
4.
l Contex for esign | much OO background who want an overview
5/Small Hxample l of the main ideas as they apply only to RT

6.00 Case Sufly |

] Note: Skip the (few) parts of chapters along the
I 7. Advanckd UC.M Mode]] path.fs that violate the pre'condi.tions or that
ay require knowledge of prior skipped parts.

.

[8. RT Case Study]

| [Detailed Design Model|
Y

I "10;:RT Case Study Contd.
(with O0)

I 11. Patten)s

1 12. $upplg¢ment; Methods I
| e end

To give both a fuller sense of use case maps and some additional insight into other
patterns for reading the book, we show a number of composite use case maps below as
they would be actually drawn using the techniques of the book. On the left is the pattern
above, redrawn to superimpose the shared parts of the paths. In the middle is a workabile,
out-of-order reading pattern for the whele beok (this is not the only one). On the right is a
concurrent study pattern that might be followed by a team of people who all read along the
same path to begin with (1-5) and then follow different paths until (a) has finished 7, (b)

Preface odil

has finished 6, and (c) has finished 8 and 10, whereupon they synchronize to pool their
knowledge, and then desynchronize to continue independently through 11-12, This map
looks like the one on the left, except for the synchronization and desynchronization bars.
The difference is that the map on the left makes no assumptions abont how many readers
are following the different paths, whereas the one on the right assumes that at least one
reader is following each path—otherwise no path could complete.

@start @ start @ start
L]
]]
]
]
I]

5
2] |
Bl]
L]

1 synchronize

owledge

end desynchronize

1]
@F
end

APPLICATIONS

There are two case studies in this book that were chosen to be representative of issues that
are encountered at the two extremes of the range of implementation technologies for sys-
tems, namely object oriented and real time. One is a GUI program (Chapter 6) and the
other is a small computer communications system (Chapter 8 and Chapter 10). To fit
within the scope of a short book, they are relatively small-scale and self-cantained prob-
lems that can be carried all the way through from high-level design to fragmentary imple-
mentation. We have tried to use the case studies as means to the end of illustrating

RN

