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Discussion of Baines and Peterson’s “An
Investigation of Flow through Screens”

T,T,Srao.'"” @In this paper the authors give us an analysis of the
pressure drop in flow through a screen spanning the entire section of a conduit
or channel. The assumption that the pressure drop through a screen with
a multiude of openings is the same as that through a plate with a single open-
ing provided that the openings of both are of the same
geometrical proportions, is reasonable. Certainly, the pattern of flow through a
screen is simply a multiple of that for a single opening, considering that the
center lines of the bars composing the screen merely represent axes of symmet-
ry of the over—all flow. The authors’ further assumption that a partial con-
striction in the form of a plate combines the features of an orifice and an-ab-
rupt enlargement, and hence is subject to simple, one—dimensional analysis, is
equally plausible. The soundnesszof the resulting equation

Np :[ 1 _ J

wvisa lci-s ! 2
is best reflected by its close agreement with the authors’ experimental results
for screens of solidity ratio $> 0.24.

The pressure drop through a screen must be defined as the difference
of the pressures at a section upstream from the screen, just before the flow be-
comes nenuniform, and at a section downstream from the screen, where the
flow becomes uniform again. The pressure drop times the cross—sectional area
A, of the conduit, however, must be balanced by the drag force of the screen,
neglecting the resistance along the tunnel walls and other forces of secondary
importance between the two sections. Defining the drag coefficient Cp,of a
body as the ratio of the drag to the product of the dynamic pressue pVi/ 2
and the projected (or solid) area Ag of the body, we have from Equation [29]
the drag coefficient for the screen

__AeAL  Ap _[ 1 1]21
‘ PV,A, /2 pViss2 LC(1-59) S
For the particular case of a screen composed of round bars, C, is then essen-
tially epual to unity,and Equation [30] reduces to

C

[30]

D

[31]

D

(-9
Since the foregoing analysis is based on the usual one—dimensional simpli-

@10 Reseerch Associate, Jowa Institute of Hydraulic Research, State University of Towa, Towa
City,JIowa.



fications of closed—conduit flow, Equations [30] and [31] may be expected to
apply only so long as such flow conditions are realized. When the solidity ratio
of a screen is small, on the contrary, the pattern reduces to that of fiow around
a series of essentially isolated (though continuous) elementary forms. The
screen must then be regarded as an immersed body rather than a conduit con-
striction. This should be apparent from the fact that both Equations [30] and
[31] require C,, to approach
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zero with decreasing values of S, which is far from true.For the same rea-
son, Equation (30) cannot be correct at small solidity ratios, even though it
correctly indicates that Ap/ (p Vi/ 2) =0 when S=0. For example, as the so-
lidity ratio approaches zero, a lattice screen takes the limiting form of a series
of bars which are infinitely far apart; if the bars are round, the limiting value of
Cp will be about 1.2, and if flat (a first approximation to square, for which da-
ta are not at hand), C,, will be about 2.0. As § > 0, therefore, Equation [29]

2



must be modified according to the true limits of Equations [30] and [31].

On the assumption that the pressure—drop coefficient for a given solidity
ratio can be determined from the drag coefficient through multiplication of the
latter by 1/ S, the writer has sought to correct the authors’ pressure curves in
the region of low solidity. Curves for pressure drops and drag coefficients for
screens of both the thin—plate and the round—bar type were first constructed,
as shown in Fig. 14, in accordance with Equations [29],[30], and [31]. With the
guide that the drag coefficient for the two types of screens must approach 2.0
and 1.2, respectively, as S approaches zero the curves for the drag coefficient
were modified by eye (guided by the one available point determined by the au-
thors in this region). Then by a simple conversion of the modified drag
coefficient to the pressure drop the modifed curves for the latter were obtainied.
In the case of round bars(for which the correction is the less accurate), the dif-

ference between the two branches of the pressure curve is seen to be quite
marked.



DEFLECTION OF JETS
T, SYMMETRICALLY PLACED V-SITAPED OBSTACLE
by
T. T. Siao and P. G, HusBarn*

The defleection of a free jet hy a solid boundary, which has long
been utilized to develop power from flowing water, is well suited
to free-streamline analysis because of the dominanece of inertia and
pressure intensity in the establishment of the flow pattern. The
design of impulse machimery utthizing this momentim change could
be facilitated greatly if the idealized geometry of the system under
potential flow conditions were known, because sueh  conditions
represent asymptotic values whieh are approached as the effeets
of secondary variables are decereased. With such mformation avail-
able, refinements of design could be based upon a seeure knowledge
of the fundamentals. and many rules of thumb could bhe replaced
with precise quantitative data in graphical or tabular form. Spe-
cifically, af the total angle through which the jet is defleeted is
determined for conditions of both partial and complete intereeption
by the houndary, then the prineiple of impulse and momentum can
be used to compute forees or other dynamie characteristies of the
svstem.

This paper and the two which follow are devoted to a determi-
nation of the angles of defleetion caused by certain idealized forms
of solid boundaries placed cither symmetrically or asymmetrieally
with respeet to the axis o' a two-dimensional jet. These patterns of
flow correspoud to those ocemrring as a bucket of an impulse
machine passes through a eiveular jet. In this paper, the free-
streamline method is used to find the angle through which a two-
dimensional free jet will be defleected by a symmetrical V-shaped
boundary placed on its axis.

As represented In Iig. Ta (the z-plane), a two-dimensional jet
with veloeity 17; and width 2 is defleeted through an angle g8 by

*Research Associate and Research Enginecer, respectively, lowa Insti-
tute of Hydraulic Research, State University of Iowa, Iowa City.
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I'REE-STREAMLINE ANALYSES

the angular boundary of projeeted width 20. The sides of the
boundary are inelined at an angle o relative to the origimal jet
direetion. In the hodograph plane (Idig. 1h). the bounding stream-
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lines beeome a circular seetor of angle a as ean be shown from the
definition relationship

_ 1 dw

$ = 5 oo

VJ' dz

in which w is the complex potential. (Details of this coneept are

(1
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DEFLECTION OF JETs — 1

eiven in the first paper in this Bulletin.) This sector is expanded
to a semicirele (Fig. 1e) by the transformation

¢o= e (2)

and finally imto the usual {-plane (Fig. 1d) by the transformation

z=—%(§'+%) 3)

In the f-plane, the flow pattern is simply that for a souree with
strength al’; at A and a sink of equal strength at D for the flow
ovcurring 1n the upper half of the plane. This latter requirement
15 satisfied i1f the strengths of the souree and sink are doubled to
provide an image pattern in the lower half (which actually repre-
sents the omitted half of the original system). Application of the
usual equations for a source and a sink on the real axis then results
mm the potential funetion (Fig. le)

w o= K;_g[ln(H—cosEE)——ln(t-{—l)] (4)

a

From the purely analytical viewpoint, Egs. (1), (2), (3), and
(4) represent the solution to the problem, heeause proper manipu-
lation of the variables will vield values of the veloeity at any point
mn the physical plane. The explicit solution of these simultancous
algebraic and differential equations as they stand is quite involved,
however, and the complexity of detail can be mitigated consider-
ably by the introduction of an auxiliary variable -. defined hy

7= {ln (3)

and two positive integers m and n (n < m) such that

n
a = —n7
m
Then, from Eq. (1)
dz = 1 dw 1 dw dt di d¢

Vit T Virdi dydg ar T
and substitution of the appropriate derivatives from 1gs. (2-5)

vields

am 1 1

2
— — m-—-n—1
dz = . Tm_es'ﬁm/n+.rm__e—iﬂm/n Tm__l] T dr




FREE-STREAMLINE ANALYSES

The resolving of this cquation into partial fractions resulis in

dz = —

s

am—l e~ titra+t 8 ' e—tltra—g) Qep—i2ra
r— et{Zra+ 5),/71_'_ 7.__e'i(’zra—— B)/n - ,r_-es'ra/n

|a- ®
r=0

Integration of this equation between proper limits will give the
coordinates in the z-plane of any pomnt corresponding to assigned
values of @ and B8 and of ¢ The differences in the coordinates of

potnts B and ¢, for example, can be found by noting that. for the
points 2 and ),

C‘B:O s g'(,zcia
ar

rp=0 . Te = eten
Thus, sinee B 1s the origin in the z-plane. integration of ¥q. (6!
hetween the Timits of 0 and € gives the coordinates of point ('

m~—1
zo = Z %e—(('lra—{r— 8) In {1 —eila—2ra— B)/n}

r=0

SRS

4+ e—iCra—8) Ip [lmei(a-—zrﬂ- B/}

—_ 28_1'2”! ln( 1 _ei(a—‘.’ru)/n]$

The imaginary part of this equation is the y-coordinate of point (',
which is equal in absolute value to the distance denoted as b in the
“z-plane :

R~ 2r 2r—1 | —
b=g sin )’Lw;—*COSB In cos—'——r—-cosé’«p_zlnsin.?__’ IW%
g r=1 m m n! 2m
.1 /2r—1 B
A= 2rnm S0 5 (ﬁﬁ“”‘ﬁ)
+;;cos T sin 3 ln‘e- 1371 N §> ita(l—cosB) (D
sin s\ o

Vertical bars in Bq. (7) indicate that absolute values are to be used.

Although analysts have already presented eencral solutions of
Jet interceptions, and Cisotti [20] has eompletely solved the par-
ticular case of the normal plate, the method presented herein is
considered more direet and the integrated solution is completed
for the general case in Eq. (7). From this equation, values of b/«
corresponding to assumed values of B8 have been computed for
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